CSU-CN

Authors: Xuhua Yan Email: <u>0921160212@csu.edu.cn</u> Platform: Linux Prerequisites: Python 3.6 with Tensorflow

CSU-CN: SUMMARY

I only used one fully convolution network (FCN) [1] which outputs two maps. One output is a normalized distance map and the other is a seed map. Then, I applied seed-based watershed transform to achieve cell instance segmentation.

CSU-CN: PREPROCESSING

Let *S* be a dataset, where $S = \{(x_i, g_i)\}$ is the subset of images x_i with instance annotation g_i taken from the available gold truth and silver truth. To solve the instance segmentation task, I used a fully convolution network to transform g_i into two semantic annotations D_i, M_i . D_i is the normalized Euclidean distance transform map for each cell. The distance values within each cell are normalized to range between 0 and 1. As for M_i , I calculate the centroid for each cell and generate a small disk around the centroid. The radius r_i of each disk is dependent on two parameters: p and r_0 .

$$r_i = \max\left(\sqrt{p \cdot \frac{S_i}{\pi}}, r_0\right)$$

where S_i is the cell area, and r_0 is the lower bound of radius for every disk. In M_i , each pixel within a disk is set to 1, otherwise 0. I adjust the parameters p, r_0 to ensure that there is not overlap in M_i . For some datasets with low image contrast, I apply Contrast Limited Adaptive Histogram Equalization (CLAHE) and normalize the input images to range between 0 and 1.

CSU-CN: SEGMENTATION

I observed that many watershed-based deep learning methods obtain the seed map (M_i) in an indirect manner and there was a big difference between the number of generated seeds and the real number. So I use a fully convolution network which takes the U-Net [2] as the backbone to directly predict the seed map from the input image, which can reduce the noise introduced by extra processing. And to obtain the distance map (D_i) which is necessary for watershed transform, I add another output head to predict the normalized Euclidean distance map. These two output heads are added directly after the decoder of U-Net. As for training, I used shifting, scaling, rotating, and adding gaussian noise for the data augmentation. I use binary cross-entropy for the distance output head and weighted mean squared error (MSE) for the seed output head. The reason why I choose this loss combination is it can be easily extended to simultaneous cell instance segmentation and classification. As for the weights in MSE loss, I fix them to 0.5 and 10 for all datasets and 0.5 corresponds to weight of background pixels. I train a model on each dataset for 200 epochs with a batch size of 4. Adam optimizer with 3e-5 or 5e-5 initial learning rate are used.

CSU-CN: POST-PROCESSING

I apply thresholding with value of T_1 to the distance prediction to get the binarized segmentation map, value of T_2 to the seed prediction to get the seed map. Finally, I use seed-based watershed transform which takes the binarized mask, distance prediction and seed map as inputs to finish instance segmentation.

REFERENCES

- 1. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 3431-3440 (2015).
- Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In *Proceedings of Medical Image Computing and Computer-Assisted Intervention*, 234-241 (2015).