
CVUT-CZ

Authors: Tomáš Sixta, Jiahui Cao, Jochen Seebach, Hans Schnittler, Boris Flach

Email: flachbor@cmp.felk.cvut.cz

Platform: Linux

Prerequisites: Python 3

CVUT-CZ: SUMMARY

The tracking-by-detection strategy is the backbone of many methods for tracking living cells in time-

lapse microscopy. An object detector is first applied to the input images and the resulting detection

candidates are then linked by a data association module. The performance of such methods depends

heavily on the quality of the detector, because detection errors propagate to the linking step. To tackle

this issue we propose a joint model for segmentation, detection and tracking. The model is defined

implicitly in terms of a Markov chain Monte Carlo algorithm and contains a temporal feedback which

allows to rerun the detector multiple times and correct detection errors using hints from neighboring

frames. The detector used in this challenge is based on a multiresolution convolutional neural network

but the model allows integration of an arbitrary detector which makes the method applicable to various

domains. The parameters of the model are learned using an objective based on empirical risk

minimization.

CVUT-CZ: DETECTION AND SEGMENTATION

Detection and segmentation is performed by a multiresolution convolutional neural network (CNN). The

network is composed of three segments, each being a CNN with 3×3 convolution filters and leaky ReLU

activations. The first segment is a CNN with 16 layers and the input to the first layer is an input image

downscaled by factor 4. The segment is followed by a deconvolution layer, which upscales the output of

the last layer by factor two. The upscaled output is then concatenated with the input image downscaled

to the corresponding resolution and used as the input to the second segment (CNN with 2 layers). The

output of the second segment is again upscaled by a deconvolution layer, concatenated with the

(original resolution) input image and used as the input to the final segment (CNN with 2 layers). The last

layer of the network predicts for each pixel its probability of being part of a cell (segmentation) and a

distance 𝐵𝑖
𝑁𝑁 to the nearest cell boundary (the distance is truncated by a threshold λdist). For more

detailed description of the network please see https://github.com/tsixta/jnet.

mailto:flachbor@cmp.felk.cvut.cz
https://github.com/tsixta/jnet

The segmentation output is thresholded at λseg and every foreground blob is partitioned into one or

several detection candidates. The partitioning algorithm has three steps: first it finds clustering seeds,

then it precalculates distances between seeds andother pixels and finally it selects a subset of seeds and

assigns each pixel to the nearest selected seed. The seeds are local maxima of boundary distance

transform of the blob, which is obtained by calculating L1 distance of each pixel to the nearest boundary.

In the second step the distance between two pixels is defined as a cost of a shortest path between these

pixels, where the cost of stepping on a pixel i is λdist − 𝐵𝑖
𝑁𝑁. This definition helps to create clusters that

closely follow cell boundaries predicted by the neural network. The subset of seeds is selected as follows.

Initially the blob is partitioned such that the discrepancy between the boundary distance transform 𝐵𝑁𝑁

predicted by the network and the actual 𝐵 induced by the created clusters

∑ (𝐵𝑖
𝑁𝑁 − 𝐵𝑖)2

𝑖∈blob

is minimized. After initialization the tracker is allowed to reconsider the initial partitioning and select a

different one, which is more probable with respect to the tracking model.

The neural network detector was trained using fully annotated images from the training sequences (we

trained separate network for each dataset). To compensate for small number of annotated images we

used data augmentation extensively (random flips and 90 rotations, elastic transforms and for Fluo-

N2DH-GOWT1 also additive intensity transforms).

CVUT-CZ: TRACKING

We formulate the tracking task as inference in an implicitly defined probabilistic model: a Markov chain

Monte Carlo (MCMC) algorithm generates several samples, which characterize the underlying

distribution, and the final solution is obtained by minimizing the Bayesian expected loss. The samples are

constructed in a sequence of local modifications of various types, e.g. start new trajectory, modify shape

of an existing trajectory in certain frame, merge two trajectories, set up a mitosis, etc.

The algorithm has two phases. The first phase is intended for initialization and the algorithm behaves in a

similar way as a Gibbs sampler. In every iteration it considers all available modification proposals m and

samples one of them based on their probability p(m). The proposals are created using initial detection

candidates only.

In the second phase the algorithm fine-tunes the sample. It does not consider all available proposals but

instead for each type preselects a proposal with highest probability p(m) among proposals of that type.

This may include reruning the detector – in some cases the initial detection step mistakenly merges one

cell with another or splits a cell into several parts, but detects it correctly in a neighboring frame. This

serves as a hint for the sampler to reconsider partitioning of the corresponding blob and come up with

appropriate modification proposals. One of the preselected proposals is then sampled based on their

probability p(m). Parameters of the probabilistic model were learned automatically using an objective

function based on empirical risk.

CVUT-CZ: POST-PROCESSING

We enhanced the final tracking results by filling holes in tracked cells. Furthermore due to the restricted

field of interest in Fluo-N2DL-HeLa we pruned the final results by removing cells whose centroids were

less than 12.5 pixels from the image boundary.

