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FR-Ro-GE: SUMMARY 

Our approach for cell tracking is based on a deep convolutional neural network for segmentation and a 

greedy label propagation for tracking. The convolutional network takes the raw images as input and 

provides the final segmentation masks as output. The network architecture consists of a contracting path 

to capture context and a symmetric expanding path that enables precise localization. The network can 

be trained end-to-end from the few annotated images provided for the training datasets using extensive 

data augmentation with elastic deformations.  

 

FR-Ro-GE: PREPROCESSING 

In all datasets (except for PhC-C2DH-U373), the gray values are image-wise normalized (normInt) to unit 

range and zero median to compensate the changes in illumination during the recording. Two datasets 

(DIC-C2DH-HeLa and Fluo-C2DL-MSC) are downscaled (scaleFactor) to achieve a larger field of view and 

to compensate different recording resolutions. 

 

FR-Ro-GE: SEGMENTATION 

The segmentation is performed by a u-shaped deep convolutional network. It consists of a contracting 

path with a series of convolution, ReLU and max-pooling layers and an expansion path with a series of 

up-convolution, ReLU and convolution layers. In the expansion path, feature maps from the contracting 

path with the same resolution are copied (see [4] for the detailed architecture). The architecture of the 

network is an extension of the “fully convolutional network” [3]. One important modification in our 

architecture is that the upsampling part has a large number of feature maps, which allows the network 

to propagate context information to higher resolution layers. As a consequence, the expansive path is 

more or less symmetric to the contracting path, and yields the u-shaped architecture. The network does 

not have any fully connected layers and only uses the valid part of each convolution, i.e., the 

segmentation map only contains the pixels, for which the full context is available in the input image. This 

strategy allows the seamless segmentation of arbitrarily large images by an overlap-tile strategy. To 
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predict the pixels in the border region of the image, the missing context is extrapolated by mirroring the 

input image. The segmentation of a 512x512 pixel image takes less than a second on a standard laptop 

(equipped with a NVidia GTX 980m GPU). For the challenge contribution, we averaged the predicted 

segmentation maps of the input image and its mirrored versions. 

 

Training the Segmentation Network. The loss function for training is computed by a pixel-wise soft-max 

over the final feature maps combined with a weighted cross entropy loss function [4]. We pre-compute 

the loss-weight map for each ground truth segmentation map to compensate the unbalanced class-

frequency in the training data set, and to force the network to learn the small separation borders, that 

we introduce between touching cells. The loss-weight map is then computed as  

w(x) = wc(x) + w0 · exp (−(d1(x) + d2(x))2/(2σ2)), 

where wc is the weight map to balance the class frequencies, d1:ΩR denotes the distance to the border 

of the nearest cell and d2:ΩR the distance to the border of the second nearest cell. In our experiments, 

we set w0 = 10 and σ ≈ 5 pixels. The provided manual segmentation masks in the training data set do not 

cover all visible cells. To obtain a consistent background training set, we manually created “ignore” - 

regions that cover all unlabeled cells, and set the loss-weights to zero within these regions. In deep 

networks with many convolutional layers and different paths through the network, a good initialization 

of the weights is extremely important. Otherwise, parts of the network might give excessive activations, 

while other parts never contribute. For a network with our architecture (alternating convolution and 

ReLU layers), a good initialization is achieved by drawing the initial weights from a Gaussian distribution 

with zero mean and a standard deviation of √2/𝑁, where N denotes the number of incoming nodes of 

one neuron [1]. Data augmentation is essential to teach the network the desired invariance and 

robustness properties, when only few training samples are available. For microscopic images, we 

primarily need shift and rotation invariance and robustness to deformations and gray value variations. 

Especially, random elastic deformations of the training samples seem to be the key concept to train a 

segmentation network with a very low number of annotated images. We generate smooth deformations 

using random displacement vectors on a coarse 3 by 3 grid. The displacements are sampled from a 

Gaussian distribution with 10 pixels standard deviation. Per-pixel displacements are then computed 

using bicubic interpolation. Gray values of the input images are randomly scaled with a factor drawn 

from a Gaussian distribution with mean 1 and standard deviation 0.1. Drop-out layers at the end of the 

contracting path perform further implicit data augmentation. The augmented input images and their 

corresponding segmentation maps are used to train the network with the stochastic gradient descent 



implementation of Caffe [2]. Due to the unpadded convolutions, the input image is larger than the 

output by a constant border width. To minimize the overhead and make maximum use of the GPU 

memory, we favor large input tiles over a large batch size and hence reduce the batch to a single image. 

To compensate for instable gradients, we accordingly set a high momentum (0.99) such that a large 

number of the previously seen training samples determine the current optimization step. We start the 

training with an initial learning rate of 0.001 which is decreased by a factor of 10 every 20,000 iterations. 

After 60,000 iterations (approx. 10 hours on an NVidia Titan GPU) the training is finished. 

 

FR-Ro-GE: TRACKING 

For tracking, we use a greedy algorithm. Each segment in frame t propagates its label to that segment in 

frame t + 1 with the highest overlap (measured as intersection over union). If a segment in frame t + 1 

receives multiple labels, it prefers the segment in frame t with the highest overlap and discards the other 

labels. If a segment receives no label, a new label is assigned. For the dataset PhC-C2DH-U373, we 

applied two further processing steps that improved the results in our other submission. In each frame 

small segments below pixel area amin are discarded. Additionally, the provided field of interest (FOI) 

specification is used to discard segments that lie completely outside the FOI (specified by the value E). 

However, we still use the tracking information from the full view to add parent links in case segments, 

which are tracked in the full view, reenter the FOI. 

 

FR-Ro-GE: POST-PROCESSING 

No post-processing is carried out after tracking. 
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