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MU-Akb-CZ: SUMMARY 

Our cell segmentation algorithm is based on a U-Net-like deep convolutional neural network. After pre-

processing and data augmentation, the network predicts the segmentation masks. The predicted images 

are post-processed to obtain final segmentation masks. Like the U-Net [1], this network consists of a 

contracting path for capturing context and a symmetric expanding path for getting precise locations of 

detected image features. We employ 4x4 max-pooling to ensure high-amplitude activations in the 

network. This network needs only a few completely annotated images for proper training thanks to 

extensive data augmentation. 

 

MU-Akb-CZ: PREPROCESSING 

In the pre-processing pipeline, we aim to normalize the input images in order to provide the network 

with images having very similar intensity levels and minimal noise so that the CNN can specialize better 

on its segmentation task. To this end, we use intensity normalization. We compute the average intensity 

value of the training sequences, mi, first. Then, the intensity values of all training, validation, and test 

images are normalized to the average intensity of the training set. After the normalization of intensity 

values, the top hat filter of size s is applied in order to filter the noise.  

 

MU-Akb-CZ: SEGMENTATION  

After the pre-processing step, data augmentation is applied to the input data. In this part, we use 

rotation (random in range [0, 359] degrees), shifting (random in 20% range in x and y axes), elastic 

transformations, and combinations of these three methods. The purpose is to increase the variety in the 

training dataset so that the trained network can perform better on unseen examples. Finally, intensity 

values are scaled down to [-0.5, 0.5] by first dividing all intensity values by 255 and then subtracting 0.5 

from all pixels. We observe that pixel values within this range provide faster activation in the 

convolutional layers since the mean intensity values are kept.  
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Our network is strongly inspired by the U-Net. It consists of a contracting path and an expansion path. 

Contracting path consists of convolution, ReLU and max-pooling layers, whereas expansion path consists 

of up-convolution, ReLU and convolutional layers. We use the same design philosophy, but introduce 

several changes in the U-Net structure. First, we use triple convolutional and up-convolutional layers. 

Second, we use 5x5 convolution kernels to extract features from bigger windows. Third, we use 4x4 max-

pooling (with stride 4x4 for down-sampling) instead of 2x2. The first two changes are necessary to utilize 

larger (4x4) max-pooling. 4x4 max-pooling ensures high-amplitude activations that propagate better to 

later layers than the ones generated by 2x2 max-pooling. We use 15 convolutional layers instead of 18 

(used in the original U-Net). The expansive path consists of up-convolutional, convolutional layers, ReLU 

activations and concatenation operations. Up-convolutional layers use 5x5 convolution kernels with 4x4 

strides for up-sampling. The resulting up-sampled feature maps are of the same size as the 

corresponding ones in the contracting path, thanks to the padded convolutions. These corresponding 

feature maps are simply concatenated without cropping. This operation is followed by three 

convolutional layer&ReLU pairs for localization of extracted features. Symmetrical to the contracting 

path, only two up-sampling steps are used. To produce the final output, a 1x1 convolutional layer is used 

with a sigmoid activation function. This output layer maps multi-channel feature maps to a single-

channel binary segmentation mask, which is the network output. The network output is of exactly the 

same size as the network input. During the implementation, there is a size constraint due to down-/up-

sampling. We down-sample the images by 16 in both dimensions. In order to produce feature maps of 

consistent sizes in the expansion path, the dimensions of input images should be integer multiples of 16. 

If this is not the case, the images are zero-padded to the nearest integer multiple of 16. The zero-padded 

regions are cropped right after the prediction. Our network can finish the training in 1000 training 

iterations, using around 400 images (without down-scaling) with the use of data augmentation that 

needs only a few annotated images for proper training. The proposed network is trained with the 

following combined loss function. 

The loss function is a crucial part of the learning process in cell segmentation networks due to the under-

representation of boundary pixels of cells. The ideal loss function should be able to handle both 

imbalanced inputs (i.e., over-representation of the background pixels) and imbalanced outputs 

(penalization of false positive (FP) and false negative (FN) pixels in the output) while correctly 

segmenting individual cell boundaries. The weighted cross-entropy loss function used in the U-Net is able 

to penalize FPs and FNs, but it is a sub-optimal solution to the imbalanced inputs problem. The Dice loss 

function [2] successfully balances the input classes; however, it cannot control the penalization of either 



FPs or FNs. Therefore, a combined loss function is recently proposed to handle both input and output 

imbalances [3]. However, Taghanaki's loss function is designed for medical images and underperforms at 

cell separation regions; it struggles to segment neighboring cells separately. Our loss function aims to 

adapt Taghanaki's loss function to the bioimage segmentation by employing the weighted cross-entropy 

loss function in [1] to enhance the learning at the cell boundary regions: 
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where 𝛼 𝜖 [0, 1] (default value is 0.5) is the relative cross-entropy weight, 𝑡𝑛 is the ground truth label for 

each pixel, 𝑝𝑛 is the predicted probability map for the foreground label over N pixels, 𝑤(𝑛) is pixel 

weights defined in [1] and 𝜀 ~0 and used to avoid division by 0. 

Our loss function looks similar to the combined loss function in [3], yet it has significant changes. In the 

cross-entropy part, it uses pixel weights, instead of constant weights. Pixel weights enhance the 

representation of the pixels between neighboring cells in the loss function. Thus, the network can learn 

better at cell boundaries and separate neighboring cells more successfully. The second component of our 

combined loss function is the Dice loss function [2]. It is used to handle imbalanced inputs, i.e., when 

there is an imbalance between the presence of background and foreground pixels. In our loss function, 

the Dice loss part is modified so that it computes the loss value without a shift because the training 

process is sensitive to the shifts in the input values. It is experimentally shown that the proposed 

combined loss function not only performs well in the case of imbalanced inputs and outputs but also 

improves the separation of touching cells. Therefore, the proposed loss function is a tailor-made loss 

function for the cell segmentation task in biomedical images. 

 

MU-Akb-CZ: POST-PROCESSING 

We apply four post-processing steps to the predicted images in order to further reduce both false 

positives (FP) and false negatives (FN) at the pixel level in the predicted images. Step 3 and Step 4 use 

temporal information. 

1. Small particle removing: In the predicted images, there may appear FPs that form small objects. 

Therefore, we remove markers that are smaller than a specified size threshold osize. 

2. Hole filling: In some frames, predicted markers may have holes (FNs) usually due to bright cell parts. 

We fill those holes. 



3. Merging: If the area covered by the separately segmented markers contains only one marker in the 

previous and the next frame, we merge wrongly separated markers by replacing them with the union of 

the corresponding markers in these three frames (correcting FNs in between them). 

4. Division of mistakenly merged markers: In some frames, the CNN can segment two neighboring cells 

as a single marker due to FPs. This step deals with those merged markers. Here, we use temporal 

information and hence call this method as the temporal inconsistency check algorithm. We use 5-

neighborhood. 

Temporal Inconsistency Check Algorithm: 

For each binary marker in frames 1, …, N (N: Total number of frames) 

i) For marker mt, count the number of cells in the area covered by mt in frames t-2, t-1, t+1 

and t+2; and store as countt-2, countt-1, countt+1, countt+2 accordingly. 

ii)  Only in the area covered by mt, sum the values in frames t-2, t-1, t+1 and t+2, and store 

the sum as 𝑠𝑢𝑚𝑚𝑡
.  

iii) If (countt-2 > 1 or countt-1> 1) and (countt+1 > 1 or countt+2> 1), start eroding 𝑠𝑢𝑚𝑚𝑡
. Else, 

continue with the next marker (step i). 

a. Erode 𝑠𝑢𝑚𝑚𝑡  until more than one cell appears in the area covered by mt 

b. Dilate the eroded markers iteratively until they merge. Then, take the divided markers 

from the preceding iteration. 

c. Remove the initial marker from the predicted image and add the divided markers to 

the predicted image. 

 

As the final touch, the small particle removing step is applied again in order to remove unwanted small 

markers created by the temporal inconsistency check algorithm. The output of this process is used as 

final segmentation masks. 
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