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UFRGS-BR: SUMMARY 

Our approach follows the typical pipeline of a tracking-by-detection method.  First, an object detector is 

used to detect the cells in each frame using an Oriented Bounding Box (OBB) representation, which are 

then converted to elliptical representations. Detection results are filtered using a score threshold and 

non-maximum suppression. Then, we generate tracklets by joining cells in subsequent frames using the 

Hungarian algorithm with an objective function based on the ProbIoU [5] metric. Finally, a global data 

association method, based on the work of Bise et al. [1], associates the tracklets to obtain cell 

trajectories and lineage trees. 

 

UFRGS-BR: PREPROCESSING 

For training the object detector, we cropped all dataset images using a 512 × 512 pixel-size window with 

100 stride. This resulted in, for each sequence, 4,508 training images for Fluo-N2DH-GOWT1, 690 for 

PhC-C2DL-U373, and 16,314 for Fluo-N2DH-HeLa. During inference, we used the full sized images, 

except for Fluo-N2DH-HeLa, which we used the crops with a 256 stride (to provide some overlap in the 

borders) and then divided the detection parameters by a factor of 2 to retrieve them with the expected 

original image sizes. Specifically for Fluo-N2DH-HeLa, we augmented all images by a factor of 2 since it 

contains cells with very different sizes. This allows us to use the same network architecture for the object 

detector without the necessity of any adjustment in its anchors to better fit this dataset cell sizes. In 

order to generate the ground-truth OBB from the cell masks to train the detector, we fitted the 

minimum area rectangle on the segmentation mask of each cell using the OpenCV implementation of 

such algorithm. 

 

UFRGS-BR: SEGMENTATION 

In this work, we advocate the use of Elliptical Bounding Box (EBB) representations for cell detection and 

segmentation, which is a natural extension of the Oriented Bounding Box (OBB) representation, but 

usually provides a better fit to the cell shape. In particular, roughly circular shapes induce a naturally 
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ambiguous angular representation when OBBs are used, since any rotated square fits equally well a 

circle.  

For such, we propose to use off-the-shelf OBB object detectors and then convert the output to elliptical 

bounding boxes (EBBs). For an OBB with center (x, y), width W, height H, and orientation Θ, we generate 

an ellipse with the same center and orientation, with semi-axes a = W/2 and b = H/2. If the OBB is clearly 

oriented (i.e., W >> H or W << H), the EBB will preserve the orientation of the OBB. On the other hand, if 

the OBB is roughly square (i.e., H ≅ W), the produced EBB will be roughly circular. In the case of a perfect 

square, the EBB simplifies to a single circle regardless of the orientation of the OBB, which mitigates the 

orientation ambiguity. 

As the object detector, we chose to use the R2CNN [2] provided by the AlphaRotate benchmark. The 

R2CNN is a two-stage object detector, i.e. it has a region proposed module (RPN) before the detection 

module, that was first proposed in text detection problems. The model parameters used for all 

experiments are the same as in the AlphaRotate default architecture. The trained model uses the 

ResNet50 [3] backbone with pre-trained weights on the ImageNet dataset [4]. Both classification 

modules (RPN and head) use the categorical cross entropy loss, and both box regression modules use the 

smooth-L1 loss. Weight decay and momentum are set to 1e-4 and 0.9, respectively. We employ 

Momentum Optimizer over 1 GPU and 8 images per mini-batch. All models are trained by 100 epochs 

with learning rate started at 1e-3, except for Fluo-N2DL-HeLa which was trained for 24 epoch with 

learning rate started in 1e-4 to prevent overfitting, since there were over 4 times more training images in 

this dataset than the other ones. The learning rate was reduced tenfold at epochs 12, 16, and 20. Finally, 

in all experiments we applied random rotation and flips to augment the training data.  

 

UFRGS-BR: TRACKING 

First, we filter the detections, by using only candidates with scores returned by the object detector larger 

than a predefined threshold 𝜏𝑠. Still, we usually have several overlapping candidates related to the same 

object, and use non-maximum suppression (NMS) to retrieve only the candidate with the highest score. 

In this step, we use the ProbIoU [5] geometrical similarity in order to measure the “overlap” degree 

between detections. Then, we generate a set of “reliable tracklets”, obtained by computing the overlap 

between all detections of subsequent frames with the ProbIoU, and the optimal association between 

detections is obtained by solving a linear sum assignment problem with the Hungarian algorithm. In 

order to avoid bad associations caused by false positive detections, we only associate pairs of cells p and 

q for which ProbIoU(p, q) < 0.1 ∗ √𝑊2 + 𝐻2. Finally, we use a global data association algorithm based on 



[1], in which they formulate a maximum-a-posteriori problem (MAP) solved by linear programming that 

addresses the tree structure association problem. The MAP problem is solved by defining a set of 

hypotheses associated with a probability score for combinations of the tracklets (i.e., each tracklet will 

respond to a set of possible hypotheses with their likelihood). More precisely, they assume the following 

five possible hypotheses: initiation, termination, translation, mitoses, and false positive. In our work, we 

propose the following modifications: 

● We removed the mitosis detection algorithm. Hence, we decided not to differentiate between 

mitotic and non-mitotic cells, and consider all cells as potentially mitotic. Furthermore, to 

address this choice, we employ two different free parameters in order to adjust the probability 

distribution of the translation and mitoses hypothesis. 

● We removed the initiation and termination hypothesis, and replaced them with a completeness 

one. 

We re-defined all the probability computations in order to use only information regarding the detected 

cells (e.g., position, time frame distance, and confidence score returned by the object detector). In 

particular, we explore the confidence score to discriminate between the true and false positive 

hypotheses. For the translation and mitoses hypotheses, we used only the center and time distance 

between detections. 

 

UFRGS-BR: POST-PROCESSING 

No post-processing is performed after tracking.  
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