
Required steps to make your code
accessible
The following guidelines were written to help participants make their deep learning code
available to future users. This will result in an accessible package, facilitating its widespread usage.
There are three main points targeted in the following lines:

- Reproducibility of the training
- Fine tuning / retraining to process new images
- Submission to other challenges / (bioimage) model zoo / integration with public libraries

Note that the guidelines are written for Python, but the same logic is applicable to other software. Matlab
submissions are obviously not required to deliver a Google Colaboratory Notebook, but should make sure that
instructions on how to run the code are clear and reproducible, and everything is updated to a public repository.

Contents
1. Key points for accessibility and usability of the code

1.1 Data

1.2 Code

1.3 Environment set up

1.4 Training and test

2. Combine the CTC submission with a public GitHub repository

2.1 CTC submission structure

Trained models folder (description)

2.2 GitHub repository

2.2.1 Creation

2.2.2 Release of the CTC submission

1. Key points for accessibility and usability of the code
To guarantee the usability of a deep learning code, the first two executions should be at
least provided. For that we request you to include in your submission the following items:

1.1 Data
The folder where the data is stored for the training / test / new inference. This folder should have
the same structure as the one provided in the CTC. For example:

Fluo-C3DL-MDA231
|- 01
|- 01_GT

|- SEG
|- TRA

|- 01_ST
|- SEG

Any additional detail for the correct execution of the code should be given (data organization, data
subfolders name, images bit depth, filenames or where to download the data for the training and
validation).

1.2 Code
Usually called as src / sw / name of the method. The folder should have all the functions / scripts
needed for at least (1) data pre-processing, (2) training, (3) data post-processing and (4)
inference. The code provided should be self-contained, i.e. steps such as data
normalization, data augmentation, loss functions, data/image generators, network
architecture, callbacks, or thresholding process should all be given in the code.

1.3 Environment set up
List of requirements (requirements.txt), setup.py, a yaml file or a bash code to set up a virtual
environment should be provided. This is critical for libraries such as Pytorch, TensorFlow, Keras, PILs,
Scipy or OpenCV.

Recommended: ​Write a bash code ​prepare_software.sh to create a new python virtual
environment with all the required dependencies. We recommend to use ​requirements.tx​t as well
so it can be easily used also in Google Colaboratory.

- Anaconda prepare_software.sh. Run it as ​bash -i prepare_software.sh to avoid
problems.

set -e

deactivate virtualenv if already active

if command -v conda deactivate > /dev/null; then conda deactivate; fi

python 3.8 or higher

if test -f anaconda3/envs/your_personal_env; then

echo "virtualenv already exists, skipping"

else

conda create -n your_personal_env python>=3.8

fi

activate virtual environment

conda activate your_personal_env

install python dependencies or use requirements.txt

pip3 install -r requirements.txt

set +e

- Python + virtualenv prepare_software.sh. Run it as ​bash repare_software.sh

set -e

deactivate virtualenv if already active

if command -v deactivate > /dev/null; then deactivate; fi

python 3.8 or higher

if test -f your_personal_env/bin/activate; then

echo "virtualenv already exists, skipping"

else

virtualenv -p python3 your_personal_env

fi

activate virtual environment

source your_personal_env/bin/activate

install python dependencies or use requirements.txt

pip3 install -r requirements.txt

set +e

1.4 Training and test / inference
Provide an example of how to train the network so the model can be used with different data. This
could be done in two different ways; either using a python script (train.py) or a Google Colab

notebook (train.ipynb). A ​Google Colab notebook,​ in particular, would be the ideal choice to enable
easy usage by scientists from other expertises not so familiar with programming, such as biologists.

Note:​ the goal of this file is to show how to train the model using new data, rather than obtain
exactly the same model as the one submitted to CTC.

- Python script (execution example):
python train.py --data_dir '../path/to/the/training' --epochs 1000 --learning_rate

0.001 --pretrained-weights ‘../path/to/submitted/model.h5’

- Google Colaboratory notebook which uses Google’s GPU free service (similar to a Jupyter
notebook). Look at StarDist, deepcell-tf or DenoiSeg for ideal examples, or at the following
short example:

!​git clone https://github​.​com/username/ctc_code​.​git

Explain how the data should be organized.

DATAFOLDER = ​'/content/drive/My Drive/path/to/data/directory'

import​ os

os.chdir​(​'/content/ctc_code/SW/code'​)

from​ data ​import​ prepare_training_data

input_data​,​ output_data = prepare_training_data​(​DATAFOLDER​)

from​ train_networks ​import​ train_unet

model = train_unet​(​input_data​,​ output_data​,pretrained_weights = True,​…​)

Provide also at least a straightforward way to test ǘƘŜ ǊŜǎǳƭǘƛƴƎ ƴŜǘǿƻǊƪ ŀƴŘκ ƻǊ apply ƛǘ to new data
(inference). This coulde be included at another one of the notebook's cells or as a separate script, as
mentioned for the training.

Some examples of “easy to use” code repositories that fit to the cited key points:

● https://github.com/mpicbg-csbd/stardist
● https://github.com/vanvalenlab/deepcell-tf
● https://github.com/juglab/DenoiSeg
● https://gitlab.fi.muni.cz/xlux/deepwater
● https://github.com/GeorgeSeif/Semantic-Segmentation-Suite
● https://github.com/oist/Usiigaci
● https://github.com/matterport/Mask_RCNN

https://github.com/mpicbg-csbd/stardist
https://github.com/vanvalenlab/deepcell-tf
https://github.com/juglab/DenoiSeg
https://gitlab.fi.muni.cz/xlux/deepwater/-/tree/master/
https://github.com/GeorgeSeif/Semantic-Segmentation-Suite
https://github.com/oist/Usiigaci
https://github.com/matterport/Mask_RCNN

2. Combine the CTC submission with a public GitHub repository
Public repositories as the ones in GitHub (​https://github.com/​) contribute to the spread of code
among developers and allow the interaction between different users such as the communication of
issues, improvement of the code and the development of extensions.

Additionally, the code could be cited even when the developers did not publish their results
(​https://github.com/AASJournals/Tutorials/blob/master/Repositories/CitingRepositories.md​) and
there is always a license associated with the code
(​https://help.github.com/en/enterprise/2.18/user/github/creating-cloning-and-archiving-repositorie
s/licensing-a-repository​).

2.1 CTC submission structure
This is the general structure of the CTC submission.

● Data (e.g. Fluo-N2DL-HeLa) ​(Required for the CTC submission)
01_RES folder

● SW (software) ​(Required for the CTC submission)
Code
Trained models
requirements.txt
my_script_for_FluoNsDLHela.bat / my_script_for_FluoNsDLHela.sh

Trained models folder (description)
This folder will be used to keep trained models that can be loaded for test and can also serve as the
place where newly trained models are saved.

There are two ways of saving a result: (1) save the entire architecture with the trained weights or (2)
store an instance of the trained network which only contains the trained weights.

To avoid any problem when loading a trained model, it is recommended that any result is stored as
an instance of the weights (e.g. using keras.save_weights or tf.sess.save()). Then, a user could build
the network architecture using the code provided and load the desired weights.

2.2 GitHub repository
Aiming for the code to be compatible with libraries such as the bioimage model zoo
(​https://bioimage.io/​), model zoo (​https://modelzoo.co/​), Kaggle (​https://www.kaggle.com/​) and
CTC (​http://celltrackingchallenge.net/​), we provide next some guidelines to create an adequate
repository.

2.2.1 Creation

Make a ​public GitHub repository that contains ​Data ​and ​code folders. ​As it is a code repository,
/Data/ ​and ​/trained models/ ​should be empty. It is also recommended to avoid any binary
file, as they can be included in a ​release ​afterwards.

https://github.com/
https://github.com/AASJournals/Tutorials/blob/master/Repositories/CitingRepositories.md
https://help.github.com/en/enterprise/2.18/user/github/creating-cloning-and-archiving-repositories/licensing-a-repository
https://help.github.com/en/enterprise/2.18/user/github/creating-cloning-and-archiving-repositories/licensing-a-repository
https://bioimage.io/
https://modelzoo.co/
https://www.kaggle.com/
http://celltrackingchallenge.net/

Note: ​This is an example of how to publish a repository synchronized with the CTC submission. If you
already have a repository, check that the accessibility & usability features are present and include
the SW folder of the CTC submission.

● GitHub repository (e.g. 'ctc_code')
■ Data (empty)
■ src (software)

● code folders
● CTC submission (SW)

o Trained models (empty)
o my_script_for_FluoNsDLHela.bat /

my_script_for_FluoNsDLHela.sh
● requirements.txt / setup.py / create_env.yml / create_env.sh
● train.py / train.ipynb (script / notebook)
● test.py / test.ipynb (script / notebook) or infer.py / infer.ipynb (script /

notebook)
■ README.md
■ LICENSE.md (optional)

README.md: Gathers the information about specific CUDA or Opencl version, links to the
training data, citations, or further explanations needed to make the code working.

LICENSE.md file is automatically created by GitHub as soon as there is any specified License.

2.2.2 Release of the CTC submission

Once the code has been submitted to the CTC, ​make a release:​

● The .bat/.sh files and all their dependencies for inference should be exactly the same as the
ones available at the CTC webpage (​http://celltrackingchallenge.net/participants/​).

● Use an informative name, e.g. “CTC submission version X.Y.Z date xxx.xx.xx”.
● Provide a short explanation of what is contained inside, link to the datasets that were

evaluated with this code, where it was submitted and any other information you find useful.
● Indicate from which branch of the code you want to have the release (it is asked by GitHub).
● Attach the instances of the network that were submitted to the CTC for evaluation, i.e.

/Trained models/​ folder.
● Publish the release.

From now on, you can change your code, but this release will remain the same, representing the
exact algorithm you submitted to the CTC. You can make as many releases as you want from your
code and use them to spread it into different platforms.

http://celltrackingchallenge.net/participants/

