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The details about the segmentation method are provided
in Section 1, while the tracking algorithm is explained in Sec-
tion 2.

1. WEAKLY SUPERVISED MICROSCOPY CELL
SEGMENTATION VIA CONVOLUTIONAL LSTM

NETWORKS

1.1. Method

We address individual cells’ segmentation from microscopy
sequences. The main challenge in this type of problems is
not only foreground-background classification but also the
separation of adjacent cells. We apply two orthogonal ap-
proaches to overcome the multiple instance problem. From
the segmentation perspective, we adopt the three class loss
used by [1], [2]. The segmentation representation is designed
to enhance individual cells’ delineation by a partitioning of
image domain into three classes: foreground, background and
cell contours. From the detection perspective, we get our in-
spiration from [3], and aim to detect rough cell markers. The
markers, as opposed to the full segmentation, do not cover the
entire cell, but are rather a small ”blob” somewhere within
the cell. The markers have two desirable properties. First,
they are much smaller than the object and thus are easier to
separate between instances. One marker will never overlap
or touch boundaries with a neighboring marker. Second, the
markers are easy to annotate, as the annotator does not need
to be precise, making data acquisition a simpler task. Often,
for microscopy image sequences, the only available annota-
tion is in the form of markers or approximate cell centers. We
train the proposed network to estimate both the segmentation
and the markers and merge the two using the Fast Marching
Distance (FMD) [4]. The entire framework is illustrated in
Figure 1.

1.1.1. Input and Output

The input to the method is a sequence of live cell microscopy
images of arbitrary length T . We define the d dimensional
(2 or 3) image domain by Ω ∈ Rd. We denote a frame in

the input image sequence as It : Ω → R , where the sub-
script t ∈ [0, T − 1] denotes the frame index and It(v) is
the intensity of a pixel (or voxel), v ∈ Ω. The output of the
network consists of two components, the scalar marker map
(Section 1.1.4) Mt : Ω → [0, 1] which represents the proba-
bility of a pixel (voxel) to belong to a marker (cell segmenta-
tion core) and the soft segmentation map (Section 1.1.3) de-
noted as St : Ω → [0, 1]3 which represents the probabilities
of each pixel (voxel) to belong to either the foreground, back-
ground or cell boundary. These two maps are then passed to
an instance segmentation block (Section 1.1.6) which outputs
the final labeled segmentation, map Γt : Ω → N+. Figure 1
shows an overview of the proposed method with visualization
of the intermediate steps.

1.1.2. LSTM-UNet

The proposed network incorporates C-LSTM [5] blocks into
the U-Net [6] architecture. This combination, first suggested
in our preliminary work [1], is shown to be powerful. The
UNet architecture, built as an encoder-decoder with skip con-
nections, enables to extract meaningful descriptors at multi-
ple image scales. However, this alone does not account for
the cell specific dynamics that can significantly support the
segmentation. The introduction of C-LSTM blocks into the
network allows considering past cell appearances at multi-
ple scales by holding their compact representations in the C-
LSTM memory units. We propose here the incorporation of
C-LSTM layers in every scale of the encoder section of the
U-Net. Applying the C-LSTM on multiple scales is essen-
tial for cell microscopy sequences since the frame to frame
differences might be at different scales, depending on cells’
dynamics. The specific architecture was selected based on
preliminary work which shows the empirical advantage over
other alternatives [1]. The network is fully convolutional and,
therefore, can be used with any image size1 during both train-
ing and testing. Figure 1 illustrates the network architec-
ture detailed in Section 1.2. The network is composed of

1In order to avoid artefacts it is preferable to use image sizes which are
multiples of eight due to the three max-pooling layers.



two sections of N blocks each, the encoder recurrent block
E

{n}
θn

(·) and the decoder block D{n}
θn

(·) where θn are the net-
work’s parameters. The input to the C-LSTM encoder layer
n ∈ [0, . . . , N − 1] at time t ∈ T includes the down-sampled
output of the previous layer; the output of the current layer
at the previous time-step; and the C-LSTM memory cell. We
denote these three inputs as x{n}t , h{n}t−1 , c{n}t−1 respectively.
Formally we define:

(h
{n}
t , c

{n}
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{n}
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where,

x
{n}
t =

{
It, n = 0

MaxPool(h
{n−1}
t ), 0 < n < N

(2)

The inputs to the decoder layers n ∈ [N, . . . , 2N − 1] are
the up-sampled 2 output of the previous layer and the output
of the corresponding layer from the encoder denoted by y{n}t

and h{2N−1−n}
t respectively. We denote the decoder output

as z{n}t . Formally,

y
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t ), N < n < 2N − 1

(3)

where:
z
{n}
t = Dθl(y

{n}
t , h

{2N−1−n}
t ) (4)

In [1] the network had a single output for the segmentation
map while here, the last layer of the network is split to pro-
duce outputs for the soft segmentation map and marker map,
St and Mt, to be discussed in the following sections. We de-
fine the full network as the composition of N encoder blocks
followed by N decoder blocks. Note, that the encoder blocks,
E

{n}
θn

, encode high-level spatio-temporal features at multiple

scales and the decoder blocks, D{n}
θn

, refines that information
into full scale segmentation and marker maps.

1.1.3. The Soft Segmentation map

The output of the soft segmentation layer is defined as fol-
lows:

St = DΘS
(y

{2N−1}
t , h

{0}
t ) (5)

where ΘS are the parameters of this layer. St has the same
spatial dimension as the input and has three channels corre-
sponding to the un-normalized evidence for the three classes,
background, foreground and cell boundary, encoded in the en-
tries l ∈ {0, 1, 2}, respectively. We define the soft segmenta-
tion, St by the following softmax equation:

St(v)
∆
= p(l|St(v)) =

exp{[St(v)]l}∑
l′∈{0,1,2} exp{[St(v)]l′}

(6)

2We use bi-linear interpolation

1.1.4. The Marker map

Similarly to the soft segmentation layer, the marker layer is
defined as:

Mt = DΘM
(y

{2N−1}
t , h

{0}
t ) (7)

where ΘM are the weights of this layer. Note that the
weight ΘM are different from the soft segmentation weights
ΘS . Mt has the same spatial dimension as the input and has
one channel corresponding to the un-normalized evidence for
the marker. We define the marker map, Mt by the following
sigmoid function:

Mt(v)
∆
= σ(Mt) =

1

1 + exp−Mt
(8)

1.1.5. Addressing 3D Data

In this paper, we address both 2D and 3D image sequences.
Due to the heavy computational load of the 3D data, we gen-
erate the volumetricMt and St from 2D slices. Let {I(k)t }Kk=1

be the input It decomposed into K slices along the depth di-
mension. Similarly, we denote the corresponding soft seg-
mentation and marker maps St = {S(k)

t }Kk=1, respectively.
In order to keep the spatial coherence we process I(k)t by
feeding the network with three consecutive slices, {I(k −
1)t, I

(k)t, I
(k + 1)t}. These three slices are concatenated

along the channel axis. The outputs St and Mt are con-
structed by stacking the respective 2D slices.

1.1.6. Instance Segmentation

The instance segmentation block merges the two network out-
puts, St and Mt, into a single, multi-label map. We define the
semantic cell region by:

Rcell
t = {v| arg max

l∈{0,1,2}
[St(v)]l = 1} (9)

The boundary class in St is used to partition the cell re-
gion, Rcell

t , into connected components, where each compo-
nent should represent a single cell instance. Yet, due to pos-
sible under-segmentation, the number of connected compo-
nents may not necessarily correspond to the number of blobs
in the marker map, which more faithfully represents the true
number of cells. We, therefore, use Mt to facilitate the sepa-
ration of merged cell instances. Let the marker regions be the
thresholded marker map such that:

Rblob
t = {v|Mt(v) ≥ 0.5} (10)

Rblob
t is partitioned intoNt connected components, {mi}Nt

i=1.
We construct the final label map Γt for each v ∈ Rcell

t , by



Fig. 1. Method outline: A. The input to the method is a time-lapse sequence of microscopy images. B. The network’s
down-sampling path consists of a C-LSTM layer followed by a convolutional layer with ReLU activation, the output is then
down-sampled using max pooling and passed to the next layer. The up-sampling path consists of a concatenation of the input
from the lower layer with the parallel layer from the down-sampling path followed by two convolutional layers with ReLU
activations. The last layer is split to produce the soft segmentation and marker maps, St and Mt, respectively. C. The two
network outputs are merged in to perform instance segmentation utilizing the FMD. The figures in the ”Instance Segmentaiton”
block show a zoom-in view of the gray dashed line. The distances to the two relevant centers allows fore optimal separation.
D. The final label map, Γt is the extracted by finding the minimal distance to the centers.

searching for the nearest mi with respect to a geodesic dis-
tance defined by the soft segmentation foreground map [St]1:

Γt(v) =

{
argmini=1,...,Nt

dfm(v,mi|[St]1) v ∈ Rcell
t

0 otherwise

(11)
The function dfm denotes the FMD, which computes the

shortest distance between a source point, v , and a target point
mi, given a speed map [St]1 in either 2D or 3D, with respect
to the input domain. Areas in a speed map with high values
will result in shorter paths, whereas areas with lower values
will constrain the solution to longer distances. Specifically,
pixels (voxels) with high boundary probability imply low
foreground probability and thus resulting in very low speed.

1.1.7. Data and Annotations

Manual segmentation of microscopy sequences is a tedious
and time consuming task, in particular where 3D+t data is
considered. The annotation task can be simplified if the an-
notator, instead, marks the approximate cell centers. While
ideally we wish to have one-hot encoded (background, fore-
ground and boundary) labels, S̄t : Ω → {0, 1}3, for the entire
training sequence, in practice, for most of the sequence cells
are only weakly annotated by markers, M̄t : Ω → {0, 1}.
Specifically, we assume that at least one frame (or 2D slice in
3D) is fully annotated.

1.1.8. Training and Loss

The network is trained using Truncated Back Propagation
Through Time (TBPTT) [7]. At each back propagation step
the network is unrolled to τ time-steps. The total loss for

training is a sum of two losses, one for the marker map, LM ,
and one for the soft segmentation map, LS . For the marker
map we use single class cross entropy loss:

LM = −
t+τ∑
t′=t

∑
v∈Ω

[M̄t·log(Mt(v))+(1−M̄t)·log(1−Mt(v))]

(12)
The soft segmentation map is penalized by the weighted,

multi-class cross entropy loss, giving higher weights, wl to
the cell contour pixels, due to the class imbalance:

LS = −
t+τ∑
t′=t

∑
v∈Ω

∑
l∈{0,1,2}

wl · [S̄t(v)]l · log([St(v)]l) (13)

Frames, or pixels within frames, which did not have GT an-
notations were not taken into account in the loss calculation.
The final loss is set to be the sum of the two:

L = LM + LS (14)

1.2. Implementation Details

1.2.1. Libraries

The method is implemented in python utilizing Tensorflow
for the neural networks section and the scikit-fmm python li-
brary for the FMD.

1.2.2. Architecture

The network include N = 4 encoder and decoder blocks. Each
block in the encoder section is composed of C-LSTM layer,
leaky ReLU, convolutional layer, batch normalization [8],



leaky ReLU and finally down-sampled using maxpool opera-
tion. The decoder blocks consist of a bi-linear interpolation,
a concatenation with the parallel encoder block followed by
two sets of convolutional layer, batch normalization [8], and
leaky ReLU. The same network is used both for 2D and 3D
datasets. All C-LSTM kernels are of size 5× 5 and all convo-
lutional layers use kernel size 3× 3. The feature depths in the
encoder and decoder paths is set to be (128; 256; 512; 1024)
and (1024; 512; 256; 128), respectively. All maxpool layers
use kernel size 2× 2 without overlap. The last convolutional
layer uses kernel size 1× 1 with depth 3 for the soft segmen-
tation layer St and depth 1 for the marker layer, Mt, followed
by a softmax or a sigmoid layer, respectively, to produce the
final probabilities (see Figure 1).

1.2.3. Training Regime

We trained the networks on each dataset separately for 200K
iterations (300K for the 3D datasets) using the ADAM op-
timizer [9] with learning rate of 0:0001. The unroll length
parameter was set to τ = 4 and the batch size was set to
five sequences. The weights w were set to be 0:15; 0:25
and 0:6 for background, foreground and cell boundary, re-
spectively (Section 1.1.8). We trained the networks us-
ing the gold truth annotations as our segmentation ground
truth for the following datasets: Fluo-C2DL-Huh7, Fluo-
C2DL-MSC, Fluo-C3DH-A549, Fluo-C3DH-H157, Fluo-
C3DL-MDA231, Fluo-N3DH-CE, Fluo-N3DH-CHO, Fluo-
C3DH-A549-SIM , Fluo-N3DH-SIM+ . We trained the net-
works using the silver truth annotations as our segmentation
ground truth for the following datasets: BF-C2DL-HSC,
BF-C2DL-MuSC, DIC-C2DH-HeLa, Fluo-N2DH-GOWT1,
Fluo-N2DL-HeLa, PhC-C2DH-U373, PhC-C2DL-PSC.



2. GRAPH NEURAL NETWORK FOR CELL
TRACKING IN MICROSCOPY VIDEOS

2.1. Method

Here, we present the method’s building blocks. A visualiza-
tion of the method outline is presented in Fig. 2. The reader
is also referred to [10] for further details about our method.

2.1.1. Graph Formulation

We use a direct, acyclic graph to model cell-to-cell associa-
tions in microscopy sequences. Let G = (V, E) define a graph
represented by its vertices (nodes) V and edges (links) E . Let
M =

∑T
t=1Kt represent all cell instances in the entire frame

sequence. A graph representation of cells and their associ-
ations is composed of |V| = M vertices, where each node
νi ∈ V, i = 1, . . . ,M represents a single cell instance ckt=τ .

For convenience, we can set i =
∑τ−1

t=1 Kt + k.

An edge ei,j ∈ E represents a potential association be-
tween a pair of vertices νi, νj , representing cell instances in
consecutive frames. To reduce the number of edges, we con-
nect a pair of cells only if their spatial Euclidean distance is
within a neighborhood region, which is calculated based on
the training set.

We address cell tracking as an edge classification prob-
lem. The desired output are labeled sets of edges defined by
an edge function Y : E → {0, 1}. Let νi, νj represent cell
instances denoted by ckt and clt+1, respectively.

Y (ei,j) = yi,j =

{
1, if ψ(ckt ) = ψ(clt+1)
0, otherwise

(15)

Accurate prediction of Y (ei,j) for the complete set of graph
edges provides the entire cell lineage associated with the ob-
served microscopy sequence. A cell trajectory Tn can be ei-
ther defined by a sequence of cell instances represented by the
graph’s vertices {νi1 , νi2 , . . . νin}, or by a sequence of edges
en = {ei1i2 , . . . , ein−1in}, that connect cell instances in con-
secutive frames, where {eij ∈ en | Y (eij) = 1}.

We assume that a non-dividing cell instance has at most a
single successor while a cell that undergoes mitosis may have
two successors and even more (in rare occurrences). Ide-
ally, if two (or more) different nodes in a frame νj ̸= νj′

are connected to the same node νi in a previous frame,
i.e.; Y (ei,j) = Y (ei,j′) = 1, then we can assume that
P (ψ(clt+1)) = P (ψ(cl

′

t+1)) = ψ(ckt ) and detect a mitosis
event. In practice, often the visual features of daughter cells
differ from those of their parent and an additional process is
required to identify and validate parent-daughter relations.
The complete representation of the proposed graph is defined
by the following attribute matrices: i) A node feature matrix
X ∈ R|V|×dV with dV features per node. ii) A graph con-
nectivity matrix E ∈ N2×|E| which represents all possible

linked cell indices from source to target. iii) An edge fea-
ture matrix Z ∈ R|E|×dE , where each row in Z consists of
dE features of an edge eij in the graph. We aim to predict
Ŷ ∈ R|E|×1

[0,1] that represents the probability to represent an
actual cell association. Next, we present the initial graph
embedding.

2.1.2. Feature Extraction

The success of cell tracking algorithms depends on correct
associations of instances of the same biological cells. We
consider instances of the same cell as members of the same
class. Altogether, we have N mutually exclusive classes.
Deep Metric Learning (DML) Features. We use deep
metric learning to learn cell feature embeddings that allow
us to assemble instances of the same biological cells and dis-
tinguish between different ones. For this purpose, we use the
cell segmentation maps or marker annotations to crop each
frame into sub-images of all cell instances. Following [11] we
use a hard mining strategy and a multi-similarity loss function
to train a ResNet network [12] to predict such embeddings.
Specifically, we generate batches of cell sub-images, where
each is composed of m same-class instances from κ classes.
Since the cell’s appearance gradually changes during the
sequence we perform the m-per-class sampling [13] using
temporally adjacent frames.
Spatio-temporal Features. While the learned feature vec-
tors serve to distinguish between cell instances based on their
visual appearance alone they do not account for temporal and
global spatial features that also characterize the cells. These
include the coordinates of the cell center, its frame number,
and intensity statistics (minimum, maximum, and average).
In the case where we have an instance segmentation mask,
the cell’s area, the minor and major axes of a bounding el-
lipse, and bounding-box coordinates are also considered. We
denote by VST ∈ R|V|×dST the spatio-temporal (ST) feature
matrix, which is composed of the dST-dimensional feature
vectors of all nodes.
Initial Edge and Node Features. The complete feature ma-
trix of all nodes in the graph includes both the learned and the
spatio-temporal features and is denoted by VV ∈ R|V|×dV ,
where, dV = dST + dDML. It is generated by a concatenation
of VDML and VST. Having VV we construct the initial edge
feature matrix VE using the distance & similarity operation
defined in Eq. 17. Since VDML and VST are from different
sources and are in different scales, we homogenize them and
reduce the complete feature vector dimension via mapping
by multi-layer perceptron (MLP) networks. These MLPs are
connected to the proposed GNN (see Section 2.1.3) in an end-
to-end manner. We denote the initial node feature vector of a
vertex νi by x

(0)
i , where x

(0)
i is the i-th row in X(0).
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Fig. 2. An outline of the proposed cell tracking framework. (a) The input is composed of a live cell microscopy sequence of
length T and the corresponding sequence of label maps. (b) Each cell instance in the sequence is represented by a feature vector
which includes DML and spatio-temporal features. (c) The entire microscopy sequence is encoded as a direct graph where the
cell instances are represented by its nodes and their associations are represented by the graph edges. Each node and edge in the
graph has its own embedded feature vector. (d) These feature vectors are encoded and updated using Graph Neural Network
(GNN). The GNN (which is illustrated in Fig. 3(a)) is composed of L message passing blocks which enable an update of edge
and node features by their L-th order neighbors (i.e., cell instances which are up to L frames apart). (e) The GNN’s edge feature
output is the input for an edge classifier network which classifies the edges into active (solid lines) and non-active (dashed lines).
During training, the predicted classification Ŷ is compared to the GT classification Y for the loss computation. Since all the
framework components are connected in an end-to-end manner the loss backpropogates throughout the entire network. (f) At
inference time, cell tracks are constructed by concatenating sequences of active edges that connect cells in consecutive frames

2.1.3. Graph Neural Network

The core of the proposed cell tracking framework is the graph
neural network (GNN) illustrated in Fig. 3(a). Exploiting the
GNN model and the message passing paradigm allows us
to simultaneously trace entire cells tracks rather than locally
associate cell instances in a frame-by-frame manner. One of
our main contributions is the graph message passing block
presented in Fig. 3(b) called the Edge-oriented Pathfinder
Message Passing Neural Network (EP-MPNN). Specifically,
we extend the MPNN block presented in [14] by introduc-
ing an edge encoder, thus enabling an interplay between the
edge and node feature update simultaneously with an edge-
attention mechanism.

The GNN is composed of L EP-MPNN blocks where
L determines the message passing extent. In other words,
the associations of cell instances in consecutive frames are
affected by the respective connections along the sequence
up to L frames away. The input to the l + 1-th EP-MPNN
block (which is, in fact, the output of the l-th EP-MPNN
block) is composed of the updated node and edge features,
denoted by X(l) = {x(l)i }νi∈V and Z(l) = {z(l)ij }eij∈E ,
respectively, where l = 0, . . . , L. The nodes are updated
using the pathfinder discovery network convolution (PDN-
Conv) [14] which is one of the two EP-MPNN components.
The other component is the edge encoder (illustrated in
Fig. 3(c)) which is trained to embed the edge features based
on the node features. We introduce the edge encoder in the
following.
Node Feature Update. The features of each node νi
are updated based on the weights of the incoming edges.
These weights are learned using an attention mechanism.

Let fPDN
edge : RdE → R define a function implemented by

an MLP that is trained to output scalars which represent
the weights of the edges, given their current features. Let
fPDN

node : RdV → RdV define a vector function implemented by
an MLP that is trained to output updated feature vectors given
the current ones. The updated feature vector of a node νi is
obtained by a weighted sum of its own and its neighboring
nodes, as follows:

x
(l)
i =

∑
j∈N (i)∪{i}

ωl
ji︷ ︸︸ ︷

fPDN
edge,l(z

(l)
j,i)

x̃
(l−1)
j︷ ︸︸ ︷

fPDN
node,l(x

(l−1)
j ), (16)

where N (i) denotes the neighbors of νi; i.e., all the nodes νj
for which there exist ej,i ∈ E . Note that fPDN

edge,l and fPDN
node,l are

trained separately for each block. Eq. 16 can be interpreted
as attention through edges, where, ωl

ji = fPDN
edge,l(z

(l)
j,i) is the

predicted attention parameter of an edge ej,i (ωl
ii = 1) and

x̃
(l−1)
j = fPDN

node,l(x
(l−1)
j ) is the mapped feature vector of a

node νj in the l-th EP-MPNN.
Edge Feature Update. The main contribution of the pro-
posed GNN framework is a mechanism for edge feature up-
date that enhances the message passing process. Unlike the
GNN presented in [14] here, the edge and node features are
alternately updated. We denote by D-S a function that returns
the distance & similarity vector of two feature vectors of con-
nected nodes as follows:

D-S(vi,vj) =
[
|v1i −v1j |, . . . , |v

dν
i −vdν

j |, vi · vj

∥vi∥∥vj∥
]

(17)

which is a concatenation of the absolute values of the differ-
ences between corresponding elements in vi and vj and their
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Fig. 3. (a) A Graph Neural Network (GNN). The GNN
is composed of L EP-MPNN blocks where L determines
the message passing extent. The l-th EP-MPNN block up-
dates the nodes and edge features, i.e., X(l−1) → X(l) and
Z(l−1) → Z(l). (b) Edge-oriented Pathfinder - Message
Passing Network (EP-MPNN) Layer. The basic layer in
the graph neural network step comprises a PDN-Conv and an
edge encoder. The PDN-Conv updates the node feature vec-
tors based on their current values and an edge attention model.
(c) Edge encoder. Updates the edge feature vectors. Its D-S
block calculates the distance and similarity between the fea-
ture vectors of each pair of nodes by an edge. The output of
the D-S block along with the nodes and the current edge fea-
tures compose the input of an MLP which outputs the new
feature vectors of the edges. The concatenation (denoted by
’⊗’) of the D-S block’s output along with the current node
and edge features formulated in Eq. 18, is the input for an
MLP which is trained to learn a new edges representation

cosine similarity vi·vj

∥vi∥∥vj∥ . In the l-th block vi = x
(l)
i and vj

= x
(l)
j . In the initial phase, when the input to the first GNN

block is formed, vi and vj are the i-th and the j-th rows in
VV , respectively. The construction of the initial feature ma-
trix VV is described in Section 2.1.2.

The edge update function fEE
edge,l (implemented as an

MLP) returns the updated features of each edge ei,j given
the concatenation of the current edge features, the updated
feature vectors of the nodes it connects, and the output of the
D-S block applied to these nodes. Formally,

z
(l)
ij = fEE

edge,l([z
(l−1)
ij ,x

(l)
i ,x

(l)
j ,D-S(x(l)

i ,x
(l)
j )]) (18)

2.1.4. Classifier and Training

The output edge feature vectors are the inputs to the edge clas-
sifier network. The classifier is an MLP with three linear lay-
ers each is followed by a ReLU activation, when a Sigmoid
function is applied to the output layer. The output is a vector
Ŷ ∈ R|E|×1

[0,1] that represents the probability for each edge to be
active (= 1) or not (= 0). We use the ground-truth (GT) edge

activation vector Y to train the model. Since most of the edges
in the graph dataset are not active (i.e., do not link nodes), our
data are highly imbalanced. Therefore, we use a weighted
cross-entropy loss function with adaptive weights which are
determined by the average number of neighbors in a batch,
i.e.,

(
1

|N | ,
|N |−1
|N |

)
. Note that since the size of the neighbor-

hood region remains fixed throughout the sequence, the num-
ber of neighbors increases as the frames become denser.

2.1.5. Cell Tracking Inference

The output of the proposed deep learning framework is a
probability matrix which identifies active edges. It is used
together with the connection matrix E to construct candidates
for cell trajectories as described in Section 2.1.1. Specifically,
predictions of cell tracks are obtained at the inference phase
in the form of a directed graph with soft edge weights (the
output of a sigmoid). The edges in the graph represent only
outgoing, potential associations between consecutive frames.
The soft weights (association probabilities) allow us to parti-
tion the graph edges into active and non-active. Considering
the outgoing/incoming edges of a specific node, there could
be one of the following outcomes: 1) All outgoing/incoming
edges are non-active - which may indicate end/beginning of a
track. 2) Only one outgoing edge is active. 3) Two or more
outgoing edges are active which may indicate mitosis (cell
division). 4) More than a single incoming edge is active -
i.e., when different cell instances are associated to the same
cell instance. Above 99% of incoming/outgoing edges con-
flicts are avoided thanks to the proposed training scheme. We
note that the network is implicitly trained to prefer bijection
cell associations thanks to the attention-based mechanism of
the GNN blocks and the weighted loss function (see Sec-
tion 2.1.4). Nevertheless, to ensure one-to-two mapping at
most (case 3), in case that the association probabilities of
more than two outgoing edges are higher than 0.5 (extremely
rare events) only the top-2 are considered as active. In addi-
tion, to ensure injective mapping (case 4), only the incoming
edge with the highest association probability (as long as it is
higher than 0.5) is considered active. This obviously feasible
ad-hoc strategy ensures a single path to each cell.

2.1.6. Mitosis Detection

Since daughter cells usually have different visual features
than their parent, it is not very frequent for a node to have
two active outgoing edges. In most mitotic events the parent
track terminates whereas two new tracks initiate. To asso-
ciate pairs of daughter cells to their parents we consider the
detected tracks of all cells. We then look for triplets of tra-
jectories (Tk, Tl, Tm) where k, l,m ∈ {1, . . . , N} such that
tkinit = tlinit = tmfin + 1. If the spatial coordinates of cktinit

, cltinit
and cmtfin

are within the same neighborhood region, then we
set P (k) = P (l) = m.



2.2. Implementation Details

2.2.1. Graph Neural Network

We implemented the proposed graph neural network (GNN)
model using the Pytorch Geometric library [15]. We train our
framework with graphs based on microscopy sub-sequences
of 10 frames while for the inference we use the entire se-
quence to construct the input graph. The prediction of all
edges (a classification into ‘active’ and ‘non-active’ edges) is
performed simultaneously.

The spatio-temporal features are normalized by min-max
scaling for each graph, while the deep metric learning features
are not pre-processed. To accommodate the high number of
cell instances within a frame and to reduce the computa-
tional complexity, cell instances in consecutive frames are
connected by edges only if their spatial Euclidean distance is
smaller than a predefined threshold that is determined by the
cells’ neighborhood region. The neighborhood region NR is
defined based on the size of the cells’ bounding box sizeBB

and the rate of the cells’ movement sizemove. Formally,
NR = α · max(maxi(sizeBBi

),maxj(sizemovej )). The
maximization is applied to each axis separately. The hyper-
parameter α is set to 2 or 4, depending on the sequence’s
density. For the graph neural network, we set the number of
layers L = 6 to perform six message-passing steps, enabling
information propagation between cell instances that are 6
frames apart. We set the dimension dV of the node feature
matrix to 32, where dE = 64 for the edge feature matrix. The
Adam optimizer [16] is used with a learning rate of 1e − 3
and a weight decay of 1e− 5.

2.2.2. Deep Metric Learning

We use Pytorch metric learning library [17] to train ResNet18 [12]
followed by multi-layer perceptron (MLP). The final embed-
ding is L2 normalized and dDML = 128. The training is done
using batches with a size of 32. Batches are constructed by
m-per-class sampler, which first randomly samples κ classes,
and then randomly samples m images for each of the κ
classes. Since the cell’s appearance gradually changes during
the sequence we perform the m-per-class sampling [13] using
temporally adjacent frames. We set κ = 8 and m = 4. The
ResNet18 and MLP models are optimized using two sep-
arated Adam optimizers [16] for each model with learning
rates of 1e − 5 and 1e − 4, respectively. We also use weight
decay of 1e−4. We use the cell segmentation maps or marker
annotations to crop each frame into sub-images of all cell in-
stances. We constructed the datasets used for DML training
by assigning to each cell instance the index of its biological
cell. In case the cell segmentation maps (rather than marker
annotations) are available we exploit them to filter out the
background via pixel-wise multiplication and extract features
such as cell size and intensities.
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