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1 Method

Our proposed Trackastra method operates on raw image sequences and cor-
responding detections (or segmentation masks) and uses an encoder-decoder
transformer to directly predict the pairwise association matrix A between all
detections in a local window of consecutive time frames. Specifically, we con-
struct a token for each object and timepoint within the local window and use
the sequence of tokens as input to the transformer. The predicted associations Â
are then used as costs in a candidate track graph that is pruned either greedily
or via discrete optimization to obtain the final cell tracks. An overview of the
full pipeline is shown in Fig. 1. The following sections describe the dataset and
training target construction, the transformer architecture, the loss function, the
inference and final link assignment, and implementation details.

1.1 Dataset and association matrix construction

Let I1, I2, . . . , IT ∈ Rw×h be an image sequence that is grouped into overlapping
windows S1, . . . , ST−s ∈ Rs×w×h of size s. Each window Sk contains a set of
detections {di} that each corresponds to a time point ti ∈ N, a center point pi ∈
R2, a segmentation mask mi ∈ {0, 1}w×h, and other potential object features
zi ∈ Rk such as basic shape descriptors or mean image intensity of the instance.
The goal of the model is to predict an association probability matrix Â = (âij)
between all di in the window Sk. To construct the target association matrix
A = (aij) the set of detections {di} is matched to the set of ground truth
objects V = {vk} and their ground truth associations. Each ground truth object
again corresponds to a time point tk, center point pk, and a segmentation mask
mk and the tracking associations can be described as a directed tree G = (V,E).
An edge ekl, k, l ∈ V exists only if tk+1 = tl and the objects vk and vl represent
the same cell at different time points, or if vk is the mother cell of vl. As a simple
matching criterion between detections di and ground truth objects vk we use

Mik = max

(
IoU(mi,mk), 1−

||pi − pk||2
δmax

)
> 0.5 , (1)

where δmax is a distance threshold and IoU denotes the intersection-over-union.
The final matching is then obtained by solving a minimum cost bipartite match-
ing problem based on the costs Mik between {di} and {vk}. Finally, for all
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Fig. 1: Overview of Trackastra. Given frame-by-frame object detections in a live-
cell video, object features are extracted from a small temporal window and passed as
tokens into an encoder-decoder transformer, to predict pairwise associations Â. We
apply a parental softmax normalisation on Â to guide the learning directly towards
biologically plausible associations. Finally, we build a candidate graph from Â and
prune it with either a greedy algorithm or discrete optimisation to obtain a tracking
solution.

matched pairs of detections (di, vki
) and (dj , vkj

), we set aij = 1 if vki
and

vkj are part of the same sub-lineage, i.e. iff vki ∈ descendants(vkj ) or vki ∈
ancestors(vkj ), otherwise we set aij = 0. Note that this way, also associations
across non-adjacent timepoints as well as appearing and disappearing objects
are supported.

1.2 Transformer architecture

The input tokens xi ∈ Rd are constructed by using learned Fourier spatial posi-
tional encodings Θ for the detection positions pi, concatenate them with some
features zi, and projecting them onto the token dimensionality d:

xi = Winp(Θ(pi), zi) . (2)

where zi are the low-dimensional feature vector containing shallow texture and
morphological features (such as mask area or mean intensity) and Winp is a linear
projection layer mapping the concatenated tensor to Rd. The model consists of
an encoder-decoder transformer architecture of 2L multi-head attention layers
with 4 heads each (cf. Fig. 1):

A(Q,K, V ) = softmax
(
QKT

√
d

+M

)
V (3)

where Q are the projected attention queries, K the projected keys, V the pro-
jected values, and M is a mask disabling attention for all token pairs whose dis-
tance is larger than a user defined threshold dmax, i.e. Mij = 0 if ||pi − pj ||2 ≤
dmax and Mij = −∞ otherwise. In every attention layer, we use rotary posi-
tional embeddings (RoPE [5]) for each intermediate token features according to
their corresponding center points pi to inject positional information. The en-
coder f transforms the input tokens using L self-attention layers Aℓ

f (X,X,X)
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to obtain representations Y = f(X). The decoder g uses L cross-attention layers
Aℓ

g(X,Y, Y ) to obtain a second set of representations Z = g(X,Y ). In between
each attention layers we use a simple two-layer MLP with GeLU activation, layer
normalisation and add residual connections following [6]. Finally, we apply two-
layer MLPs to Y and Z and compute the logits of the association matrix as their
outer product

Â = (MLPY (Y ))(MLPZ(Z))T . (4)

1.3 Parental softmax

Given the predicted association logits Â a simple approach to extract association
probabilities Ã ∈ (0, 1) would be to apply a sigmoid to each entry of Â, i.e.
Ã = σ(Â). However, this approach does not enforce the combinatorial constraints
of cell tracking, i.e. the uniqueness of each objects parent while allowing for more
than one child, as well as appearance and disappearance of objects. To remedy
this, we propose a logit normalisation that we call parental softmax and which
ensures that the block-wise sum of all entries in the vector of possible parent
associations for each di is at most one (cf. Fig. 1). Concretely, we define the
parental softmax Φ(Â) as

Ã = Φ(A)ij =
exp(Âij)

1 +
∑

i′∈Pj
exp(Âi′j)

, (5)

where Pj = {di′ |ti′ = tj − 1, ∀i′ ∈ D} denotes all detections in the frame before
detection dj . Note that adding a constant to the denominator (quiet softmax )
allows for detections to not be assigned to any parent detection, accommodating
for appearing and disappearing objects.

We then define the loss to be minimized during training as

L(A, Â,W ) = LBCE(A,Φ(Â),W ) + λLBCE(A, σ(Â),W ) , (6)

where LBCE is the usual element-wise binary cross-entropy loss, λ ∈ R is a small
fixed parameter (we use λ = 10−2 throughout), and W is a weighting factor for
each matrix element. The elementwise weighting terms W are set to

wij =



0 tj − ti > ∆t temporal cutoff
∨ tj − ti < 1 only forward links

1 + λdiv deg+(vki
) = 2 dividing cells

1 + λcont deg+(vki
) = 1 continuing tracks

1 otherwise

, (7)

where deg+(v) is the out-degree of vertex v in G. We choose ∆t = 2, λdiv = 10
and λcont = 1 as fixed hyperparameters. This choice effectively up-weights the
loss for cell divisions and continuing tracks, and removes the loss for associations
that are not used during the linking step.
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1.4 Inference and linking

Inference is done with a sliding window of size s as in training. To obtain global
scalar association scores 0 ≤ āi′j′ ≤ 1 from Ã(1), . . . , Ã(T−s), where i′ and j′ are
global detection indices in a video I1, I2, . . . , IT , we take the mean over the s−1
windows that include this association

āi′j′ =
1

s− 1

∑
i′,j′∈St

â
(St)
i′j′ . (8)

Next, we build a candidate graph GC = (V,E) with a maximum admissible
Euclidean distance distmax between detections in adjacent time frames. For this,
we use associations āi′j′ with t′j − t′i = 1, i.e. the upper blockwise diagonal of
Ā. To generate a first association candidate graph we directly discard small
associations with āi′j′ < α with α = 0.05. This candidate graph is then pruned
to a solution graph GS = (VS , ES) with VS ⊆ V,ES ⊆ E with one of the
following linking algorithms:

Greedy We iteratively add edges and their incident nodes to GS , ordered by
descending edge probability, if the edge probability θ ≥ 0.5 and if the edge does
not violate the biological constraints (i.e. at most two children, and at most one
parent per vertex)

deg+(v) ≤ 2 ∀v ∈ Vs

deg−(v) ≤ 1 ∀v ∈ Vs . (9)

Linear assignment problem (LAP) We use the established two-step LAP
as described by Jaqaman et al . [3], implemented in [1]. In the first step, linear
chains are formed, which are connected to full cell lineages in a second step. We
set a maximum linking distance adapted to the respective dataset, and use the
default values for all other hyper-parameters.

Integer linear program (ILP) We solve a global ILP with all detections as
graph vertices and associations {āi′j′} with tj′−ti′ = 1 as edges. The formulation
enforces the biological constraints in Eq. (9), as described in [4]. We set the
parameters of the ILP, i.e. the linear weights of different classes of costs, to
values that balance the likelihoods of appearance, disappearance and divisions
of cells.

1.5 Implementation details

Training details: We train a single Trackastra model for prototypical 2d and
3d cell tracking datasets on a single GPU (e.g . an Nvidia A6000 with 48GB
memory). 2d datasets are simply treated as 3d datasets with a single plane in
the third dimension. We set window size s = 4, embedding dimension d = 512,
number of encoder and decoder attention layers L = 5, and batch size 8.
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Shallow object features: As basic object features we use the mean intensity, the
object area and the inertia tensor of the object region [2].

Augmentations: We apply the following data augmentations jointly to all frames
in a window: flips, arbitrary rotations, shear, scaling, intensity shifting and scal-
ing. Additionally, we apply data augmentations to each frame per window inde-
pendently: small rotations, shear, translations, additive gaussian noise.
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