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1. INTRODUCTION

The software uses a tracking by detection framework with 3 separate
segmentation algorithms and a track linking algorithm based on the
Viterbi algorithm. For the Fluo-N3DL-DRO, Fluo-N3DL-TRIC,
and Fluo-N3DL-TRIF datasets, it also uses a detection prepro-
cessing algorithm based on GM-PHD filtering, which allows it to
use dynamic motion models in the track linking step. The soft-
ware is called the Baxter Algorithms and can be downloaded from
https://github.com/klasma/BaxterAlgorithms. The software is writ-
ten in Matlab and C++. Earlier versions of the software have been
used in the ISBI Cell Tracking Challenges of 2013, 2014, 2015,
2019, and 2020. For the Cell Tracking Challenge of 2021, I submit-
ted results for the primary track and updated results for the datasets
Fluo-C2DL-Huh7 and Fluo-N3DL-TRIF. In Fluo-N3DL-TRIF, I
switched from the setting that had been optimized using coordinate
ascent to the settings from Fluo-N3DL-TRIC, as it seemed like there
was some overfitting to the training data. The code and the settings
for the other secondary track datasets are all unchanged and there-
fore I found it unnecessary to submit the results for those datasets
again. The algorithm descriptions given in the text apply to both the
primary and the secondary track, but the settings presented in the
text apply only to the secondary track. The training procedure and
the minor algorithm changes used in the primary track of the Cell
Tracking Challenge of 2021 are described in Section 5.

The Baxter Algorithms were developed in a collaboration be-
tween the department of signal processing at KTH and the Blau lab at
Stanford University, while I did my PhD at KTH. In the Cell Track-
ing Challenges of 2013, 2014, and 2015, I participated in a team
together with my advisers Joakim Jaldén and Helen Blau. The work
that was done for the cell tacking challenges of 2019, 2020, and
2021 was however done at RaySearch Laboratories. It should how-
ever be noted that I did most of the work on the BF-C2DL-HSC and
BF-C2DL-MuSC during my PhD, as I had access to those datasets
through our collaboration with the Blau lab.

Parallel processing of multiple frames is used in the segmenta-
tion step. The number of frames that are processed in parallel is
decided based on the amount of RAM available but is never made
larger than the number of processor cores.

2. SEGMENTATION

The software uses 4 different segmentation algorithms, described in
sections 2.2, 2.3, 2.4, and 2.5 to generate binary segmentation masks,
which it then post-processes to extract cell regions, as described in
Section 2.6. When possible, a search algorithm, described in Sec-
tion 2.7, was used to optimize the segmentation parameters, but in
some cases better results were achieved by optimizing the parame-
ters manually in a graphical user interface. Automatically optimized
parameter values are underlined in the text and the tables. In the
descriptions below, all images have been converted to 64-bit double

images with a saturation intensity of 1.

To reduce the memory usage, each z-stack of the Fluo-N3DL-
TRIF is broken into 16 sub-volumes which are segmented separately.
The sub-volumes overlap by 100 voxels in each direction and af-
ter they have been segmented, the segmented blobs from all sub-
volumes were combined into a segmentation result for the entire z-
stack. Without separating the z-stacks into sub-volumes, 64 GB of
RAM is not enough to perform segmentation.

2.1. Background subtraction

To get rid of background features in Fluo-C2DL-MSC, BF-C2DL-
HSC, BF-C2DL-MuSC, and PhC-C2DH-U373, background images
were subtracted before the respective segmentation algorithms were
applied. In the fluorescence dataset Fluo-C2DL-MSC, the back-
ground image was computed as the minimum intensity for each pixel
position, taken over the time dimension of the sequence. In the trans-
mission microscopy datasets BF-C2DL-HSC, BF-C2DL-MuSC, and
PhC-C2DH-U373, the median intensity was used instead of the min-
imum intensity.

In BF-C2DL-MuSC, the appearance of the image changes over
time. Therefore, separate background images were computed for
different time intervals. To deal with gradual changes of the image,
a linear combination of background images was fitted to each im-
age and then subtracted. Background images were computed for the
frame intervals 1-321, 322-421, 422-875, 876-908, and 909-1376.

2.2. Bandpass segmentation

The bandpass filtering based segmentation algorithm presented in
[1] was used to segment all of the Fluo datasets and PhC-C2DL-
PSC. The filtering was performed by convolving the original image
I with two different Gaussian filters G's and G, with covariance
matrices X = 0'322 and X = ng. In 2 dimensions, X is the
2 x 2 identity matrix, and in 3 dimensions ¥ = diag(1,1,1/7?),
where r is the ratio between the voxel height and the voxel width.
The two filtered images are given by Is = [ * Gs and Iy = [ *
G, and the bandpass filtered image is Isp = Is — afg, where a
is a free parameter. The binary segmentation mask is obtained by
applying the threshold 7 to Igp. To avoid under-segmentation of dim
objects that are close to bright objects, some of the datasets were
preprocessed using intensity clipping, where all pixel values above
Tinax are set to Jpmax.

In Fluo-N3DH-CE, the noise properties are different in the dif-
ferent image dimensions, and thereforea 5 x 1 x 3 (dz X dy X dz)
median filter was used to reduce the noise before the bandpass filter
was applied. In the Fluo-C2DL-MSC datset, a tophat filter with a
radius of 300 pixels was applied to remove background intensity. In
Fluo-N3DL-TRIC and Fluo-N3DL-TRIF 2D tophat filters were ap-
plied to remove the high background in regions with densely packed
nuclei. The tophat filters had radii of 15 and 18 pixels respectively.
In Fluo-N3DH-CE and PhC-C2DL-PSC, different values were used



for os and op for the first and the last image of the sequence, and
used linear interpolation was used to compute different values for
all images in between. In the Fluo-N3DH-CE dataset, the same lin-
ear functions were used for both sequences, but the sequences have
different lengths and therefore they have different settings in the last
image. The parameter values used for the different datasets are given
in Table 1.

Table 1. Bandpass filtering parameters.

Dataset seq. s OB a T Tinax
Fluo-C2DL-Huh? 12 265 566 0481 00103 0.266

i 3.04 148 0582 0031
Fluo-C2DL-MSC ) 3% 192 032 oows 0

i 156 100 00156
Fluo-C3DH-A549 ) 1.5 B 10 owss !

1 9.41 594 129 00233 0.185
Fluo-C3DH-AS49-SIM ) % 7 1% oo oim

i 0.01
Fluo-C3DH-H157 ) 5 50 8 a1
Fluo-C3DL-MDA231 12 1 NA 0 0125 1

1 0.005
FluoN2DH-GOWTI 18 2 Lo 02

1 125 136 101 000408 0440
Fluo-N2DH-SIM+ ) o e T 9ot o3
Fluo-N2DL-HeLa 12 259 46 0931 O974E5 1

i 15(8) 20(12)
Fluo-N3DH-CE S isess  2o0ah 0.01 1
Fluo-N3DH-CHO 12 3 4 15 0.005 1

1 127 422 0.0024 0.6
Fluo-N3DH-STM+ 2 178 124 L 000139 0.633
Fluo-N3DL-DRO 12 15 8 i 001 03
Fluo-N3DL-TRIC 12 0495 10.6 08 000234 1
Fluo-N3DL-TRIF 12 0495 10. 08 000234 1
PhC-C2DL-PSC 12 2320740) 4612.12) 1 00026 |

2.3. Variance segmentation

To segment the cells in BF-C2DL-MuSC and PhC-C2DH-U373, we
computed a texture image representing the intensity variance in a
region around each pixel in the original image. This technique has
been used previously to segment cells in transmission microscopy
images [2, 3]. For the BF-C2DL-MuSC dataset, we computed the
variance in a square Wyar X Wyar = 7 X 7 pixel region as in [3]. In PhC-
C2DH-U373 we weighted the surrounding pixels using a Gaussian
kernel G with covariance matrix Xy, = UfarIz, where I is the 2 x 2
identity matrix. We computed pixel n of the weighted local variance
image V as

[V]n =

G+ 1], _([G*nn)ﬁ 0

(G 1], [G=*1],

where I? is an image with the squared pixel intensities, 1 is an im-
age with all ones, and [-],, denotes pixel n of an image. The obtained
variance image was thresholded using a threshold 7y, to give a bi-
nary segmentation mask. On PhC-C2DH-U373 we used the param-
eter values oy, = 1.88, Tvar = 5.57E-5. On BF-C2DL-MuSC we
used Tyor = 1.44.

Given that the variance and the weighted variance are computed
in large regions, the intensity variations on the boundaries of the cells
will contribute to the computed texture of pixels outside of the cell.
To avoid getting regions that are too large, we applied morphological
erosion with a square we X we = 7 X 7 pixel structuring element in
BF-C2DL-MuSC and a round structuring element with a radius of
8.31 pixels in PhC-C2DH-U373.

2.4. Template matching segmentation

To segment the BF-C2DL-HSC dataset, I used a segmentation algo-
rithm based on template matching, which is described in [4]. In the
algorithm, the cells are compared to a template, which in our case is
a tightly cropped 23 x 23 pixel image of a single representative cell
in the training data.

The segmentation algorithm computes the correlation coefficient
between the template and all image regions of the same size as the
template. This produces a correlation coefficient image which has
local maxima on the centers of the cells. To handle cells of different
sizes, the template is scaled to have side lengths of 19, 21, 23, 25,
and 27 pixels. The cells are then detected as local maxima in a max-
imum intensity projection over the different sizes. For each local
maximum, the cell size is taken to be the size which has the highest
value for the local maximum pixel. The detections with a correlation
coefficient above Tiemp = 0.45 are then converted into pixel masks.
Circular pixel regions of the same sizes as the templates are created
around the local maxima. The detections are added in order of de-
creasing correlation coefficients and detections which are closer than
10 pixels from an already added detection are discarded. Pixels that
are inside multiple circles are assigned to the closest local maxima.

The local variance segmentation algorithm that was used on BF-
C2DL-MuSC was used as a secondary segmentation algorithm, to
deal with cells that do not fit the template. The parameters for the
variance segmentation were set t0 Wy = 5, We = 7, and Ty =
2. The secondary algorithm is used to create a binary segmentation
mask, the pixels segmented by template matching are removed, and
then morphological opening with a disk with a radius of 6 pixels is
used to get rid of thin fragments that have been segmented between
the cells detected by template matching.

2.5. Ridge segmentation

To segment cells in DIC-C2DH-HeLa, we developed an algorithm
inspired by the algorithm used to segment muscle fibers in [5]. We
first apply a ridge detection filter similar to the filter described in [5],
to highlight the boundaries between the cells. The ridge detection is
done by smoothing the image with Gaussian kernels with standard
deviations o of 5, 6, 7, 8, 9, and 10 pixels, and computing the Hes-
sian at each pixel of the 6 resulting images. The ridge image v (o) at
the scale o is then computed from the eigenvalues A1 and A2, where
A1 < Ao, of the corresponding Hessians as

( ) 0 if A1 >0 @)
vo(o) =
0 e’RB/VQ(l — e’s/ﬁz) otherwise

where Rg = |X2| /|A1]and S = A] 4+ \3. Weusedy = 1l and 3 =
10. The final ridge image was obtained by taking the pixelwise max-
imum of v (o) over all o and smoothing using a Gaussian filter with
a standard deviation of 1 pixel. Once we had the ridge image, we
transformed the intensities using the function f(z) = asinh(20x), to
enhance dim ridges, and divided by the mean intensity of the trans-
formed image. Then we thresholded the ridge image at 0.75, and
skeletonized the resulting binary mask to extract cell boundaries. To
determine which of the resulting regions were cells and which were
background, we computed a local variance image where each pixel
value represents the sample variance in a 9 x 9 pixel neighborhood of
the corresponding pixel in the original image. Regions with an aver-
age local variance above 0.0005 were considered to be cell regions.
To fill in gaps in the skeletonized boundaries, we detected all end
points of the skeleton and connected pairs of end points by straight
lines of pixels. End points were connected if they were no more than



50 pixels apart, and if the added line cut through a single segment,
without generating a fragment smaller than 7500 pixels. If one of
the new regions would become a background region, the size thresh-
old was instead set to 200 pixels, as the operation would not split a
cell in two. After joining end points, we removed cracks in regions
by erasing all boundary pixels which were bordering a single region.
Then we merged the background regions and the border pixels into a
single background region. Finally we merged cell regions with less
than 7500 pixels into adjacent cell regions until all cell regions either
had at least 7500 pixels or were surrounded by background pixels.

2.6. Post processing

Table 2. Parameters for segmentation post processing.

Dataset seq.  Amin Swin watersheds ow Huin
BF-C2DL-HSC 1,2 40 0 none NA NA
Fluo-C2DL-Huh7 1,2 100 5 bandpass(shape) 0 0.00831(5.74)
BF-C2DL-MuSC 1,2 96 0 variance(shape)  5.87(0.162 3.13(3)
DIC-C2DH-HeLa 1,2 0 0 shape 0 10

1 100  intensity(shape) 10 10(8)
HlEeCADLAYRIC 2 % 150 shape(shape) 20(10) 0(10)
Fluo-C3DH-A549 1,2 100 0 none NA NA
Fluo-C3DH-A549-SIM 1,2 100 0 none NA NA
Fluo-C3DH-H157 1,2 5000 100 shape 0 10
Fluo-C3DL-MDA231 1,2 100 0 intensity 0 25
Fluo-N2DH-GOWT1 ; 0 350 shape 0 5

1 10 0 S
Fluo-N2DH-SIM+ 5 0 25 shape 7 01
Fluo-N2DL-HeLa 1,2 0 0.25 shape 0 1
Fluo-N3DH-CE 1,2 0 0 bandpass 0 0.001
Fluo-N3DH-CHO 1,2 0 100 Xy-shape 0 S
Fluo-N3DH-SIM+ ; 530 ;88 shape 0 5
Fluo-N3DL-DRO 1,2 100 0 bandpass 0 0.02
Fluo-N3DL-TRIC 1,2 25 0 bandpass(shape)  2.38(0.737)  0.000254(0.427
Fluo-N3DL-TRIF 1,2 0 5 bandpass(shape)  2.38(0.737)  0.000254(0.427)
PhC-C2DH-U373 1,2 1200 0 none NA NA
PhC-C2DL-PSC 1,2 20 0 bandpass(shape) 0(0) 0.0293(0.75)

To break regions with multiple cells into individual cell regions,
we applied a seeded watershed transform to the image intensity, the
bandpass filtered image, the local variance, or the distance trans-
form of the binary segmentation mask. The distance transform is
computed so that the transform value is the Euclidean distance to
the closest background pixel. For z-stacks, where the voxel height
was different from the voxel width, we used the anisotropic distance
transform [6], where the distance between z-planes is different from
the distance between neighboring voxels in the same plane. In Fluo-
N3DH-CE, Fluo-N3DL-DRO, and Fluo-N3DL-TRIC this did how-
ever give poor separation boundaries between the watersheds, as the
distance between z-planes was too large. To avoid these problems,
we inserted virtual z-planes between adjacent z-planes in the dis-
tance transform. We assigned values to the virtual z-planes using
linear interpolation, ran the watershed transform and then removed
the virtual planes. We used 9 virtual z-planes for Fluo-N3DH-CE
and 2 for Fluo-N3DL-DRO and Fluo-N3DL-TRIC. For all datasets,
the watershed transform was constrained to the foreground pixels of
the binary segmentation mask, to speed up the computation, and to
avoid getting watersheds which overlap with multiple cell regions.
To avoid over-segmentation we applied Gaussian smoothing with a
standard deviation of ow, and/or an h-minima transform with an h-
value of Hpin. In Fluo-N2DH-GOWT1 we also removed watershed
seeds with a distance transform value below 10 pixels, to further
reduce over-segmentation. In BF-C2DL-MuSC, Fluo-C2DL-MSC,
Fluo-N3DL-TRIC, Fluo-N3DL-TRIF, and PhC-C2DL-PSC we ap-
plied an additional watershed transform with other parameters, after

the first one, to break even more clusters into individual cells.

To get rid of regions without cells, we removed regions with
fewer than A, voxels, and regions where the summed voxel inten-
sity was below Smin. To compute the summed voxel intensity, we
subtracted the minimum value of the image, and summed all voxels
inside the segmented region. In Fluo-N3DL-DRO and Fluo-N3DL-
TRIC, we also removed regions larger than 10000 voxels.

For some datasets, we applied morphological operators to the
extracted cell regions. We filled in holes in the segments of all
datasets. In the Fluo-N2DH-SIM+-02 image sequence and in Fluo-
N3DH-SIM+, we added all pixels inside the convex hulls of the orig-
inal regions. Whenever a pixel was in the convex hull of multiple
regions, we did not add it to any of them. In Fluo-N2DH-GOWT1
there were also pieces missing from the segments, but the true re-
gions were not always convex, so to fill in missing parts, we instead
applied morphological closing with a circular structuring element
with a radius of 12.2 pixels. The variance based segmentation of
PhC-C2DH-U373 tends to give too large regions, due to the large
kernel used to compute the variance. To overcome this problem, we
applied morphological erosion with a circular structuring element
with a radius of 8.31 pixels.

In DIC-C2DH-HeLa there was quiet a lot of over-segmentation,
but in many cases over-segmented regions were correctly seg-
mented in adjacent images. We therefore tired to reduce the over-
segmentation by looking for cases where multiple cells overlapped
with the same region in an adjacent image. If the fragments were
smaller than 15000 pixels and had at least 60 % of their pixels in
common with the region in the adjacent image, they were merged
into a single region.

2.7. Parameter optimization

For many of the datasets we used an automated search algorithm to
optimize the segmentation parameters. The search algorithm used a
type of coordinate ascent with variable step length to optimize the
individual parameters one at a time. The parameters were initialized
using manual tweaking, and the step lengths were set to 10 % of the
initial values. In each iteration of the optimization, the algorithm
goes through the parameters one at a time and tries both increasing
and decreasing them by the corresponding step lengths. The param-
eters are adjusted to the best value if either of the options gives a
better result. If a better segmentation is found, the step length is in-
creased by 20 % and otherwise it is decreased by 20 %. We used the
SEG-measure as utility function for the optimization and ran it for
25 iterations. For Fluo-C2DL-MSC, Fluo-N2DH-SIM+, and Fluo-
N3DH-SIM+, Fluo-C3DH-A549, and Fluo-C3DH-A549-SIM, the
parameters were optimized separately for each image sequence, but
for all other datasets, the optimization was performed over all image
sequences simultaneously, on the average SEG-measure.

3. TRACK LINKING

For all datasets except Fluo-N3DL-DRO, Fluo-N3DL-TRIC and
Fluo-N3DL-TRIF we applied our global track linking algorithm [3]
directly to the detected cell regions. For Fluo-N3DL-DRO, Fluo-
N3DL-TRIC, and Fluo-N3DL-TRIF we used a detection prepro-
cessing algorithm [7], which takes advantage of the dynamic nature
of the nuclei motion by preprocessing the detected locations using
a Gaussian Mixture Probability Hypothesis Density (GM-PHD) fil-
ter [8]. Once we had preprocessed the locations, we linked them
using the track linking algorithm in [3]. The algorithm considers the
n most likely cell migrations to and from each detected cell region



in the image sequences. For all datasets except Fluo-N3DL-TRIC
and Fluo-N3DL-TRIF n was set to 3 in order to not exclude true
migrations. For Fluo-N3DL-TRIC and Fluo-N3DL-TRIF however,
n was set to 1 to decrease the run time and memory requirements.

3.1. Global track linking

Our track linking algorithm is global in the sense that it considers all
images of the image sequence simultaneously when tracks are gen-
erated. The algorithm optimizes a probabilistically motivated scor-
ing function by iteratively adding cell tracks to the image sequence.
This is done by constructing a state space diagram representing all
possible ways in which an additional cell track can be added to the
image sequence [3]. The arcs of the state space diagram have scores
associated with them, so that we can find the track which increases
the scoring function the most by finding the highest scoring path
through the state space diagram. Given that the state space diagram
is a trellis graph, the highest scoring path can be found by solving a
shortest path problem using the Viterbi algorithm. To prevent incor-
rectly created tracks from blocking the creation of correct tracks in
subsequent iterations, the preexisting tracks can be edited using so
called swap operations, when new tracks are created [3].

The scoring function is a sum of logarithmic probabilities of
tracking events which describe migration, mitosis, appearance, dis-
appearance, and the number of cells in each detection. The proba-
bilities of migration events are computed as described in [3], using
a Brownian motion model where the location of a cell in one image
is assumed to follow a Gaussian distribution with covariance matrix
o¥X, centered around the location of the cell in the previous image.
We used the same 3 as in Section 2.2, except for Fluo-N3DH-CE,
where we used 3 = diag(1, 1, 1/(4r?)), as there was significantly
less motion in the z-dimension than in the other dimensions. The
values for oy were set manually for all datasets, and are given in Ta-
ble 3. In Fluo-N3DH-CE, we used different values for ov for the first
and the last image of the sequence, and used linear interpolation to
compute a different value for each image in between. The prior prob-
abilities that segmented regions contain 0, 1, or more than 1 cell are
denoted po, p1, and p2. The probability that a cell undergoes mitosis
in a region is denoted ps, and the probabilities that a cell appears or
disappears randomly in a region is denoted pa. For all datasets ex-
cept BF-C2DL-HSC and BF-C2DL-MuSC, these probabilities were
set manually, and are given in Table 3. For BF-C2DL-HSC and BF-
C2DL-MuSC, logistic regression classifiers were used to compute
Po, P1, P2, and ps. The logistic regression classifiers use intensity-
and shape-features of the segmented regions and were trained on
manually corrected tracking results on the training sequences. De-
tails about the classifiers and the features can be found in [3].

Once the Viterbi algorithm is done generating tracks, the seg-
mented regions with multiple cells are separated using k-means clus-
tering of the pixel coordinates as described in [3], so that each cell
gets aregion of its own. Then the track linking is updated, to account
for the new centroid positions of the individual cells, by solving an
assignment problem which maximizes the scoring function of the
track linking problem. For the image sequences which have “yes”
in the last column of Table 3, we included segmented regions in the
results even if the track linking algorithm found them to be false
positives. This was done to maximize the TRA and SEG measures,
which penalize false negatives a lot more than false positives.

Table 3. Track linking parameters.

Dataset seq. oy Do p1 P2 Ps PA FP
BF-C2DL-HSC 2 2 NA NA NA NA 0 no
BF-C2DL-MuSC 12 11 NA NA NA NA 0 mo
DIC-C2DH-HeLa 1225 01 07 02 001 0 yes
Fluo-C2DL-MSC b2 o1 08 01 0 o M

2 40 yes
Fluo-C3DH-A549 12 3 02 08 0 0 0 no
Fluo-C3DH-AS49-SIM 12 3 02 08 0 0 0 no
Fluo-C3DH-H157 YoM 007 08 01 0 0001 o
Fluo-C3DL-MDA231 12 75 02 07 01 0 0  yes
Fluo-N2DH-GOWTI 12 5 01 08 01 00l 0001 no
Fluo-N2DH-SIM+ 12 10 005 094 001 001 IES5 no
Fluo-N2DL-HeLa 125 01 08 01 001 IE6 yes
Fluo-N3DH-CE > s(iag) 001 099 001 001 IE6 mo
Fluo-N3DH-CHO 1210 01 08 00l 001 IE6 o
Fluo-N3DH-SIM+ 12 12 02 07 01 00 0 o
PhC-C2DH-U373 12 12 01 08 01 0 0 o
PhC-C2DL-PSC 122 005 09 005 00 0 mo

3.2. Global track linking with detection preprocessing

The cells in Fluo-N3DL-DRO, Fluo-N3DL-TRIC, Fluo-N3DL-
TRIF form tissues which deform as the embryos develop. Because
of this, the nuclei follow smooth and predictable trajectories. The
track linking procedure described in 3.1 assumes that the nuclei
follow Brownian motion, and can therefore not take the velocities
of the nuclei into account when it predicts where they are going
to be in the next frame. To enable tracking of fast moving nuclei,
we therefore used the algorithm described in [7]. That algorithm
first runs a GM-PHD filter on the centroids of the nuclei and then
links the Gaussian components (which include velocity states) of the
computed hypothesis densities into tracks using the track linking al-
gorithm in [3]. For the GM-PHD we used the directed linear motion
model that we used to track simulated microtubules in [7], with a
scale factor ¢ = 0.5 for the process noise, and an observation noise
covariance of R = 22X. For the remaining parameters described
in [7] we used the following values: ps = 0.9999, pp = 0.999,
k = 4E—6, wmin = 0.001, KLDpin = 1, Juax = 10000, and
oy = 2.

To get estimates of the probabilities that Gaussian components
in the GM-PHD correspond to cells, we trained a multinomial logis-
tic regression classifier on the weights of Gaussian components that
were updated using detections that overlapped with ground truth re-
gions in the training dataset. The component with the highest weight
in each detection was assumed to be a cell and the others were as-
sumed to not be cells. This was the best we could do with the incom-
plete ground truth that we were given. The same classifier was used
for Fluo-N3DL-DRO, Fluo-N3DL-TRIC and Fluo-N3DL-TRIF.

We first tracked all of the nuclei using the algorithm described
above, and then we selected the tracks which overlapped with one of
the manually marked nuclei in the first image. For manually marked
cells which had no overlapping tracks, we selected the closest non-
overlapping track.

For Fluo-N3DL-DRO we expected all of the selected tracks to
reach the end of the video. We therefore extended broken selected
tracks by linking them to fragments of unselected tracks. This was
done by propagating the state of the broken track to the frame after
the break, using the directed linear motion model, and then linking
it to the closest unselected track in that frame. This was done itera-
tively until all selected tracks reached the end of the image sequence.



4. POST TRACKING SEGMENTATION

To remove segmentation errors that were due to over-segmentation
in the watershed transforms, we iteratively merged region fragments
without cells into adjacent regions with cells, after the tracking had
been completed.

We took this idea one step further in the dataset Fluo-C3DH-
A549 and the image sequence Fluo-C2DL-MSC-01, where we also
merged region fragments without cells in image ¢, into cells with
which they overlapped in one of the images ¢t —3,¢t—2,t —1,t+1,
t + 2, and t + 3. The fragments were merged to the regions of the
cells in image ¢, provided that the cells were present in that image.
The merging was done iteratively until no more fragments could be
merged.

5. CTC 2021 PRIMARY TRACK

Results for the primary track of the ISBI 2021 Cell Tracking Chal-
lenge were generated using bandpass segmentation and the global
track linking algorithm without detection preprocessing with a GM-
PHD. The segmentation parameters were optimized using coordi-
nate ascent and the track linking parameters were the same for all
datasets. Both the segmentation and tracking performance would
have benefited from optimization of the track linking parameters, but
that kind of optimization had not yet been implemented in the soft-
ware in 2021. The segmentation performance would probably have
been slightly higher if raw segmentation results had been submitted
without running tracking.

Bandpass segmentation is only meant to be used on the fluo-
rescence microscopy datasets and PhC-C2DL-PSC. The watershed
transforms used for post-processing allow it to segment many of the
cells in the other datasets too, but there are other algorithms which
can handle those datasets much better.

5.1. Segmentation

For the primary track submission, all datasets were processed us-
ing the bandpass segmentation described in Section 2.2. The same
pre-processing and post-processing was used on all datasets. All
other dataset specific pre-processing and post-processing, such as
tophat filtering of the input image and morphological closing of seg-
mented regions was removed. For preprocessing, intensity clipping
with an intensity threshold of In.x was used. For post-processing,
two seeded watershed transforms were used. The first was applied
to the bandpass filtered image and the second was applied to the dis-
tance transforms of the binary segmentation masks. To avoid over-
segmentation, h-minima transforms with h-values of HY;, and H,,
were applied to the bandpass filtered image and the distance trans-
form respectively. Regions with fewer than A, voxels, and regions
with a summed voxel intensity below Smin Were removed to get rid
of false positives.

5.2. Intensity normalization

To make it easier to achieve good segmentation results on all datasets
with a single set of parameters, the image sequences were rescaled
to have a minimum intensity of 0 and a maximum intensity of 1
according to

I, (t) — ming, » I (7)
MaX,r I (7) — Miny, + Ln(7)

L™(t) = , A3)

where I,(t) and I;"™(t) is voxel n in time point ¢ of the original
and normalized image sequences respectively.

5.3. Segmentation parameter optimization

The parameters Inax, Ho, H., Amin, and Spin were optimized us-
ing the coordinate ascent algorithm described in Section 2.7. The
coordinate ascent algorithm was modified so that the step length was
increased by 40 % if the utility function was not affected by nei-
ther increasing nor decreasing the scoring function. Previously, the
step length was decreased by 20 % in that case, but that often made
parameters get stuck on values where they had no effect on the seg-
mentation.

The scoring function was changed from SEG to 0.9SEGr +
0.1DET, where SEGg is a relaxed version of the SEG measure, in-
troduced in [4]. The relaxed SEG measure is different from the tra-
ditional SEG measure in that it associates the ground truth regions
with the computer generated regions which give the highest Jaccard
indices, without requiring that more than half of the ground truth
region is covered. The relaxed measure is easier to optimize as it
allows segmentation improvements to guide the optimization even if
the segmented regions do not yet cover more than half of a ground
truth region. The term 0.1DET was added to the scoring function to
penalize false positives. In the secondary track, where false positives
were not penalized in the segmentation parameter optimization, the
initial optimization often resulted in a lot of false positives which
were removed by setting either Amin or Smin manually. In the pri-
mary track, segmented regions were included in the results even if
the track linking algorithm found them to be false positives, as there
were very few real false positive detections given that DET was in-
cluded in the utility function in the segmentation optimization.

The initial segmentation settings can be found in Table 4. All
settings were optimized using 25 iterations of coordinate ascent. To
reduce the computation time in the ST scenario, 32 time points were
used to optimize the settings of image sequences with more than
32 time points. In the GT+ST scenario, the set of time points was
instead limited to the time points with GT segmentations plus 32
other time points. All ST-regions associated with a tracking marker
also associated with a GT-region were removed in the GT+ST and
allGT+allST scenarios. The SEGr measure was then computed as
the average of the SEGr measures of the GT and filtered ST ground
truths.

Table 4. Initial guess for segmentation optimizations.

b d
gs OB (67 T [max Hmin Hmin Amin Smin

3 10 1 0.01 1 0.01 2 100 5

5.4. Track linking

The same tracking settings were used on all datasets. The settings
were adjusted manually by looking at the training data with seg-
mentation settings optimized using the GT-ground truth. The TRA
measure was never evaluated, as that would not have been allowed
for the scenarios where only the ST-ground truth is available. The
tracking settings can be found in Table 5.



Table 5. Track linking parameters used in the primary track.
ov._po pr_ P2 ps J2N FP
15 02 07 01 001 0.001 yes

6. CTC 2024 TRACK 3

Results were submitted to track 3 of the linking-only benchmark in
the ISBI 2024 Cell Tracking Challenge. Results were also gener-
ated for the simulated datasets Fluo-C3DH-A549-SIM, Fluo-N2DH-
SIM+, and Fluo-N3DH-SIM+ in track 4, using the same approach.

The linking-only benchmark is a great initiative, as it is now
possible to compare linking algorithms that are not coupled to a seg-
mentation algorithm. It would however be even better if the pre-
computed segmentations to be linked came directly from a real seg-
mentation algorithm, as that would make the problem more realistic.
For example, the segmentation from the highest performing segmen-
tation algorithm in the segmentation-only benchmark could be used.
In the current linking-only benchmark, there are no false positives
and it seems like segmented regions have been artificially removed
to make the linking problem harder. In real cell tracking problems,
there are usually false positives and cells are almost never missing
from the segmentation. In general, the biggest challenge is associ-
ated with cells that are segmented jointly in clusters.

6.1. Track linking

The pre-segmented regions were passed directly to the track linking
without any segmentation post-processing. The global track link-
ing algorithm without detection preprocessing with a GM-PHD was
used. Detection pre-processing with a GM-PHD, which is used for
the embryonic datasets, does give the Baxter Algorithms the abil-
ity to handle cells that are missing from the segmentation. It could
therefore have improved the results, but it was not used because it
would increase the complexity and probably decrease the perfor-
mance for users who wish to apply the algorithms to real-world data.
The parameter FP, which converts tracks that the algorithm consid-
ered to be false positives into real tracks, was used for all datasets as
the performance measures do not penalize false positives.

6.2. Track linking parameter optimization

The parameters ovyy, 0vz, Po, P1, P2, Ps, Pa, and pp were optimized
using 10 iterations of the coordinate ascent algorithm described in
Section 2.7. The parameter pp is the probability that a cell disap-
pears. In prior challenges, that value was always set equal to pa,
but in the linking-only benchmark, the two parameters were allowed
to have different values. Similarly, the standard deviations of the
motion model were allowed to be different in the xy-plane and in
the z-direction by using ¥ = diag(a?,yx,a\z,xy,a\z,z /r?) as the co-
variance matrix of the Gaussian distribution in the Brownian motion
model. The probabilities po, p1, p2 should normally sum to 1, but
they were optimized individually for simplicity, as none of the al-
gorithms rely on the probabilities summing to 1. The parameter pg
could have been set to 0 as there are no false positives in the linking-
only benchmark. It was however kept in the optimization as it can
be important for the performance in real-world applications.

In the optimization, ovxy and ov, had a lower bound of 0.5 vox-
els. The other parameters had a lower bound of 0 and an upper bound
of 1. The linking accuracy measure (LNK) was used as scoring func-
tion in the optimization. The initial guess used for all parameter opti-

mizations is given in Table 6 and the optimized parameters are given
in Table 7.

Table 6. Initial guess for track linking parameter optimizations.
OVxy Ovz Po P1 p2 Ps PA PD
15 15 02 07 01 0.01 0.001 0.001

Table 7. Optimized track linking parameters.

Dataset Ovxy  OVz Po p1 p2 ps pa Pp
BF-C2DL-HSC 243 15 0018 1 0.132 0.0115  0.00133  3.38E-4
BF-C2DL-MuSC 22.4 15  0.018 0.875 0.045 0.0072  0.00159  0.00125
DIC-C2DH-HeLa 18.9 15 0.018 0.875 0.099 0.01 0 0.00139
Fluo-C2DL-MSC 35.1 15 0.046 0945 0.00396 0.01 0.001 0.001
Fluo-C3DH-A549 15 15 0.2 0.7 0.1 0.01 0.001 0.001
Fluo-C3DH-A549-SIM 15 15 0.2 0.7 0.1 0.01 0.001 0.001
Fluo-C3DH-H157 287 15 0.2 0.7 0.1 0.00314  0.001 0.001
Fluo-C3DL-MDA231 18.8 15 0.09 0.875 0.125 0.01 0.001 0.001
Fluo-N2DH-GOWT1 113 15 0.13 0.7 0.1 0.01 0.001 0.001
Fluo-N2DH-SIM+ 13.6 15 024 0875 0.1 0.012 0.00116 0.001
Fluo-N2DL-HeLa 113 15 0.2 0.84 0 0.0113  0.00202  8.98E-4
Fluo-N3DH-CE 151 15 009 0562  0.156 0.0105  9.36E-4  0.001
Fluo-N3DH-CHO 113 15 0.2 0.7 0.1 0.01 0.001 0.001
Fluo-N3DH-SIM+ 113 15 0.09 0.7 0.1 0.01 7.5E-4 0.001
PhC-C2DH-U373 15 15 0.2 0.7 0.1 0.01 0.001 0.001
PhC-C2DL-PSC 243 15 0.018 1 0 0.0337  6.41E-4  0.00195
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