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I. SUMMARY

We propose to use our Bayesian linking algorithms KOFT
and SKT (1) that are implemented in our ByoTrack (2) Python
library. They both rely on Kalman filters to model particle
motion, and solve the tracks-to-detection association frame
by frame with Jonker-Volgenant algorithm to find a solution
to the Linear Association Problem (LAP). Whereas classical
Bayesian approaches (like SKT) measure only the position
(sometimes the intensity) of the tracked objects (3–8), in KOFT
we use optical flow to also measure the velocity of these
objects. More precisely, its Kalman filter is designed with a 2-
steps update at time t: a first update is done with the position of
the associated detection, a second update measures the future
velocity of the track using optical flow between frame t and
t+ 1 at the estimated localization of the track (see Figure 1).
Cell mitosis events are detected through a second LAP at each
frame between linked tracks and non-linked detections.

II. METHOD

In this section, we present our method called Kalman
and Optical Flow Tracking (KOFT). We also introduce a
baseline method, referred to as Standard Kalman Tracking
(SKT), that follows closely KOFT implementation but does
not exploit optical flow. In the following, each track i is
modeled with an unobserved state xi

t ∈ R4 which consists
of positions and velocities. The detections zit at frame t are
the noisy measurements of the underlying tracks. In KOFT
and SKT, the tracks’ states are iteratively estimated from these
measurements using Kalman filtering (see Figure 1).

A. Kalman filtering
Track state xi

t is modeled as a Markov chain along time
(process) and detections zit are generated from the states
(measurement) with the following model:

xi
t = Fxi

t−1 +wi
t [process] (1)

zit = Hxi
t + vi

t, [measurement] (2)

This research is supported by the Institut Pasteur and France-BioImaging
Infrastructure (ANR-10-INBS-04). R.R and T.L. are supported by the ANR
(ANR-21-CE45-0020-01 REBIRTH).

Raphael Reme (raphael.reme@pasteur.fr), Tristan Manneville (tris-
tan.manneville@pasteur.fr), Thibault Lagache (thibault.lagache@pasteur.fr)
and Jean-Christophe Olivo-Marin (jcolivo@pasteur.fr) are with the BioImage
Analysis Unit at Institut Pasteur, CNRS UMR 3691, as well as with
Université Paris Cité in Paris, France.
Alasdair Newson (anewson@telcom-paris.fr) and Elsa Angelini
(elsa.angelini@telecom-paris.fr) are with the LTCI unit at Telecom Paris of
the Institut Polytechnique de Paris, France.

where zit is the measurement vector of track i at time t, F is
the process matrix and H is the measurement matrix. wi

t and
vi
t are uncorrelated process and measurement noise vectors.

They are modeled as zero-mean Gaussian noise vectors with
Q and R as their covariance matrices.

Under these assumptions, Kalman filtering optimally and
iteratively estimates the state distribution (xi

t)t from the ob-
served measurements (zit)t. Let (x̂i

t−1, P̂
i
t−1) be the mean

and covariance of the state estimation at frame t − 1 such
that xi

t−1|(zik)k<t ∼ N (x̂i
t−1, P̂

i
t−1). The estimation at frame

t is computed in three steps (prediction, projection and up-
date) (9,10):

x̄i
t = Fx̂i

t−1, P̄i
t = FP̂i

t−1F
T +Q [prediction]

(3)

yi
t = zit −Hx̄i

t, Si
t = HP̄i

tH
T +R [projection]

(4)

x̂i
t = x̄i

t +Ki
ty

i
t, P̂i

t =
(
I−Ki

tH
)
P̄i

t, [update] (5)

where xi
t|(zik)k<t ∼ N (x̄i

t, P̄
i
t) is the prior (or predicted) state

at time t, (yi
t,S

i
t) is the innovation and Ki

t = P̄i
tH

TSi−1

t the
optimal Kalman gain.

B. Process model

Contrary to the original paper (1), in CTC datasets, cells
usually follow Brownian-like motion. Therefore, we use a
locally constant position model (5,6). Tracks’ states consist of
positions and velocities: xi

t = (xi
t, ẋ

i
t, y

i
t, ẏ

i
t). Without any loss

of generality, let dt = 1 be the time frame interval:

F =


1 dt 0 0
0 0 0 0
0 0 1 dt
0 0 0 0

 , Q = σ2
acc


dt4
4

dt3
2 0 0

dt3
2 dt2 0 0

0 0 dt4
4

dt3
2

0 0 dt3
2 dt2


(6)

where σacc accounts for the expected velocity variations.
For each track state at frame t − 1, we compute the prior

state at frame t with our process model (Equation 3) before
associating and updating with any measurement (see following
sections).

C. Data association (linking)

At any time step t, our algorithm attempts to associate each
predicted track x̄i

t with a detection zjt from frame t. Tracks
that are successfully associated with a detection are said to
be linked. To achieve this linking, we compute the Euclidean
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Fig. 1. SKT & KOFT overview. Kalman filtering is used to iteratively estimate track states (positions and velocities). In SKT, positions and velocities are
updated from previous detections. In KOFT, an additional dense optical flow is computed between frame t and t + 1 to measure the forward displacement
of each pixel. This complementary information is integrated into the Kalman filter to improve the velocity estimates.

distance between predicted tracks and detections with Cij =∣∣∣∣∣∣Hx̄i
t − zjt

∣∣∣∣∣∣. Tracks-to-detections associations are found by
minimizing the sum of distances using the Jonker-Volgenant
algorithm (11). We only considered associations below a fixed
distance threshold η.

To detect splitting events (cell mitosis), we run a second
linking step between linked tracks and non-linked detections.
We bias association toward plausible splits with a modified
cost that accounts for cell sizes. Let a track i of size ρi
associated to a detection j of size ρj in the first step, the
cost to associate i to another detection k of size ρk is defined
as C̄ik = Cikγjkγ

′
ijk, where γjk =

max(ρj ,ρk)
min(ρj ,ρk)

increases
the cost when the two detections have different sizes and
γ′
ijk =

max(ρi,ρj+ρk)
min(ρi,ρj+ρk)

increases the cost when the children
sizes do not sum to the parent track size.

D. Track creation & termination

As there are no false positive detections, new tracks are
created from non-linked detections. To be robust to false
detections, a new track is created only if its initial non-linked
detection can be linked over Nvalid frames.

To handle cases where an object may be difficult to detect
for a short time, remaining non-linked tracks are maintained
for Ngap frames. During this time, their states are not updated
in the Kalman filter, but the prediction step is still carried out.
After Ngap missed consecutive frames, we terminate the track.

E. Update states from detections

To update a track state from detections, we model the posi-
tional measurement noise as a Gaussian with zero mean and
variance σ2

pos. Our positional measurement model is therefore:

Hpos =

(
1 0 0 0
0 0 1 0

)
, Rpos = σ2

posI2 (7)

In both SKT and KOFT, the state of the track i linked to a
detection zjt is updated according to Equations 4 and 5, where
H, R and zit are given by Hpos, Rpos and zjt . We denote the
resulting posterior state as x̂i,SKT

t : this is the posterior state
used in SKT.

F. Update states from optical flow

In KOFT, we propose to measure objects velocity using
optical flow and to further update the tracks state using this
additional measure. KOFT is therefore designed with two
update steps (Figure 1): for each frame, the track states are
updated a first time with a positional measurement from
detections (see Section II-E above), and then a second time,
with a velocity measurement from the optical flow.

Let Φt,t+1(z) ∈ R2 be the computed optical flow between
frame t and t+1 at pixel position z. To measure the velocity
of a tracked object i at time t, the optical flow between frames
t and t + 1 (i.e. the forward displacements of the pixels)
is first computed. Next, the velocity is extracted from the
optical flow map at the object’s expected position: zi,vel

t =
Φt,t+1(H

posx̂i,SKT
t ). We model the velocity measurement noise

as Gaussian with zero mean and variance σ2
vel. Our velocity

measurement model is therefore:

Hvel =

(
0 1 0 0
0 0 0 1

)
, Rvel = σ2

velI2 (8)

The SKT posterior state x̂i,SKT
t is further updated according to

equations 4 and 5, where H, R and zit are given by Hvel, Rvel

and zi,vel
t . We denote the resulting posterior as x̂i

t.

G. Optical Flow

KOFT can be used with any robust optical flow algorithm.
We decided to rely on Farneback algorithm (12). We used the
Open-CV implementation (13), where we only tune the window
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size parameter and kept the default values for all the other
parameters.

H. Post-processing

We smooth the track positions after tracking. We as-
sume a Gaussian positional noise and use the optimal
Rauch–Tung–Striebel (RTS) smoother (14). This slightly im-
proves localization of tracks, but does not change any associ-
ation.

III. IMPLEMENTATION DETAILS AND PARAMETERS TUNING

Implementations of KOFT and SKT are based on the Python
library ByoTrack (2). Data and code are available at https:
//github.com/raphaelreme/byotrack. All the Kalman filters in
SKT and KOFT use the same hyper-parameters that are set
using ad-hoc rules.

First, we compute three video-specific features from the
provided cell segmentation: (1) the average cell radius ρ, (2)
the average distance of the closest neighboring cell dclosest and
(3) the increase α between the final and initial number of cells.

Then, we use these features to set the default values of our
hyper-parameters:

• The window size w of Farneback is set with w =
max(10, ρ

2 ).
• The uncertainty of Kalman filters are set following σpos =

ρ
2 , σvel = σacc = 3ρ.

• The association threshold is fixed with
η = max(3ρ, dclosest).

• Handling splitting event is only done if α > 30%
• In the cell linking benchmark, there is no false positive

detection, we therefore set Nvalid = 1. There are few
missed detections and we set by default Ngap = 1,
allowing to bridge over 1 missed detection.

• For 3D videos, we did not find a robust optical flow and
decided to simply use SKT which is faster and already
yields good performance.
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