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Description of MAGIK 

MAGIK is a geometric deep-learning framework for the analysis of biological system dynamics from 

time-lapse microscopy [1]. MAGIK models the movement and interactions of objects through a 

directed graph, where nodes represent object detections at a specific time and edges connect nodes 

that are spatiotemporally close (Figure 1a-b). In its simplest form, each node contains the object's 

centroid as a feature, while edges encode the Euclidean distance between the centroids of the 

connected objects. However, there are no intrinsic restrictions on the type or number of descriptors 

(e.g., location and morphological features, image-based quantities, biological events, interaction 

strength, distance, direction) that can be encoded in the graph feature representation.  

The framework casts the detection linking task as an edge-classification problem with a binary label 

(linked/unlinked).  The initial graph structure includes a redundant number of edges with respect to 

the actual associations between objects. MAGIK aims to prune the redundant edges while retaining 

the true connections. This is achieved using a Message Passing Neural Network that seeks to modulate 

the associative form between connected nodes by minimizing the binary cross-entropy between the 

predicted edge probabilities and the ground-truth associations.  From the predicted edge 

probabilities, trajectories are built through a postprocessing algorithm that eliminates spurious 

connections (Figure 1c). 

 

 

Figure 1.  Estimation of spatiotemporal features using MAGIK. a Sequence of images illustrating the evolution of a group of cells over 

two consecutive frames. b The movement and interactions of the objects are modelled geometrically using a directed graph. In this 

graph, nodes (v) represent detections and edges connect spatiotemporally close objects. Each node contains the object's centroid as 

features. Edges (e), in turn, encode Euclidean distance between the centroids of the connecting objects.  In this example, the node of 

interest (labelled with the subindex i and located in frame t) is connected to neighbouring nodes in frame t+1 (labelled with the subindex 

j) within a distance-based likelihood radius.  c The graph is processed to predict connection probabilities between objects as a binary 

edge-classification task. The final trajectories are constructed by applying a postprocessing algorithm that eliminates spurious 

connections based on the predicted edge probabilities.  
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Execution details 

Accompanying this document is a Python Notebook that provide a comprehensive, step-by-step guide 

on how to train and apply MAGIK for estimating object trajectories in each 2D dataset from the Cell 

Tracking Challenge. This notebook is designed to be user-friendly and adaptable, ensuring that 

researchers can modify the code to suit their specific requirements. 

The notebook is divided into five sections: 

1. Reading and Viewing the Data: This section demonstrates how to download datasets directly 

from the Cell Tracking Challenge webpage. The downloaded data is visualized for verification, 

allowing users to explore and understand its structure before proceeding.  

2. Graph Construction: Here, the notebook explains how MAGIK constructs a directed 

spatiotemporal graph using segmentation maps as input. It details the underlying 

methodology and implementation, including parameter choices that define the maximum 

spatial and temporal distances for connecting nodes. Specific parameters used for each 

dataset are documented, ensuring reproducibility and enabling users to tailor the graph 

construction process for other datasets if needed. 

3. Dataset Construction: In this section, a training dataset is created from the spatiotemporal 

graph. Samples are extracted as sequences of consecutive frames, representing a fraction of 

the total video duration. The extraction is performed stochastically to ensure diverse and 

representative samples. Details on the fraction of frames sampled, the duration of sequences, 

augmentations, and the total number of data points for each dataset are provided.  

4. MAGIK Definition and Training: This section provides the code necessary to define and train 

MAGIK, which is implemented as part of the deeplay deep learning package. Users can follow 

the provided instructions to train the model from scratch using their own datasets. For 

convenience, an alternative option to load and apply a pre-trained MAGIK model is also 

included, allowing users to bypass the training process if desired. 

5. Model Evaluation: The final section focuses on evaluating the performance of the trained 

MAGIK model. Tools are provided for assessing the quality of predicted connections, 

visualizing the generated paths, and overlaying these trajectories onto the original video 

frames. The outputs include visual representations to help users gauge the model's accuracy 

and effectiveness. 
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