
JAN-US

Authors: Caroline Malin-Mayor, Peter Hirsch, Leo Guignard, Katie McDole, Yinan Wan, William C. Lemon,

 Philipp J. Keller, Stephan Preibisch, Jan Funke

Email: funkej@janelia.hhmi.org

Platform: Linux

Prerequisites: Python 3, MongoDB, pylp, zarr (and other standard python packages; we provide a

 singularity definition file with all dependencies included)

JAN-US: SUMMARY

We use sparse point annotations to train a convolutional neural network to predict at each pixel a cell

indicator value that peaks at the center of each nucleus [1, 2], and a movement vector that points to the

center of the same cell nucleus in the previous time frame [3, 4]. From these predictions, we generate a

candidate graph in two steps: first, we place nodes at the local maxima of the cell indicator values to

represent possible cell center locations, with a score to encode the network's confidence. Second, we

locally connect nodes in adjacent frames with edges to represent the possibility that the nodes represent

the same cell, and assign a score to each edge based on agreement with the predicted movement vector.

Next, we solve a global constrained optimization problem on the candidate graph to select a subset of

nodes and edges that form coherent lineage trees. We know that between time frames, cells can move,

divide into two, enter or leave the field of view, or die, but not merge or split into more than two. Thus,

we introduce hard constraints to prevent merging and divisions producing more than two progeny. The

objective function incorporates prior knowledge that cell movement is much more common than

division, death, and entering or leaving the field of view, encouraging long, continuous lineages by

penalizing the start and end of tracks. These tree constraints and continuity costs are similar to those in

previous work [5, 6, 7]; however, we also incorporate the node and edge scores generated by the neural

networks into the objective function as learned costs. Thus, we optimize for valid lineages that are both

continuous and supported by the learned cell location and movement features. Our Integer Linear

Program (ILP) formulation of the optimization problem additionally allows solving piece-wise in parallel

on large datasets by introducing additional constraints to ensure consistent solutions between adjacent

regions. The method is described in detail in our preprint [7], together with results on other datasets.

JAN-US: PREPROCESSING

The training and testing volumes are converted into zarr containers. Gold-truth tracks for the training

data (keeping only the centroid information provided by the challenge, not the segmentation) are stored

mailto:funkej@janelia.hhmi.org

as CSV files. After training of the cell indicator and movement vector network, predictions on the testing

volume are stored in zarr containers as well. Predictions outside the foreground are masked out. For

Fluo-N3DL-DRO the foreground is determined automatically based on the raw image data. As this failed

for Fluo-N3DH-CE a 2D polygon with about 10 points is drawn manually around a maximum intensity

projection of each volume, this is extended in the z dimension and used as a mask.

JAN-US: TRACKING

We create a candidate graph G = (V, E) where nodes represent possible cell center locations, and edges

possible movements of cells across frames. The nodes are found as NMS detections of the cell indicator

values. We construct the set of directed edges E by locally connecting nodes in adjacent frames with

edges that point one frame backwards in time. For each candidate v at time tv, we compute the

predicted location Îv of the same cell in the previous frame: 𝑡̂v = lv + mv, where lv is the position of the

node and mv is the predicted movement vector. Then, we add an edge from v to each node candidate u

at time tv – 1 where the distance between the predicted location and the actual location of u is less than

a hyperparameter . The edge is further scored by this distance. A lineage tree is then found by

optimizing an integer linear program to find a cost-minimal forest in the candidate graph. Costs are

defined for the selection of nodes (based on the value of the cell indicator) and edges (based on the

distance between prediction and actual location). Linear constraints ensure that the selected nodes and

edges form a binary forest. See [7] for a detailed description of the optimization problem.

JAN-US: SEGMENTATION

Our method is designed as a detection plus tracking system and therefore does not natively provide

segmentations. To overcome this, we utilize the cell indicator predictions. Our network predicts a map

with peaks at the centers of predicted nuclei locations. To create instance segmentation masks we

perform a seeded watershed with the detections selected by the ILP as seed points and the inverted cell

indicator map as the watershed surface. We threshold this map at a value  (hyperparameter). To further

improve the segmentation we roughly estimate the nuclei size on the training set at up to 5 frames with

varying nuclei size and count. We mask each instance with a sphere centered at the detection and with a

size equal to the estimated nuclei size based on the next later estimated frame.

JAN-US: POST-PROCESSING

No post-processing step has been taken after segmentation.

REFERENCES

1. Höfener H, Homeyer A, Weiss N, Molin J, Lundström CF, Hahn HK. Deep learning nuclei detection: A

simple approach can deliver state-of-the-art results. Computerized Medical Imaging and Graphics 70,

43-52 (2018).

2. Kok RNU, Hebert L, Huelsz-Prince G, Goos YJ, Zheng X, Bozek K, Stephens GJ, Tans SJ, van Zon JS.

OrganoidTracker: Efficient cell tracking using machine learning and manual error correction. PLoS

One 15, e0240802 (2020).

3. Hayashida J, Nishimura K, Bise R. MPM: Joint representation of motion and position map for cell

tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3822-

3831 (2020).

4. Sugawara K, Cevrim C, Averof M. Tracking cell lineages in 3D by incremental deep learning.

bioRxiv:2021.02.26.432552, 2021.

5. Schiegg M, Hanslovsky P, Kausler BX, Hufnagel L, Hamprecht FA. Conservation tracking. In

Proceedings of the IEEE International Conference on Computer Vision, 2928-2935 (2013).

6. Jug F, Levinkov E, Blasse C, Myers EW, Andres B. Moral lineage tracing. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 5926-5935 (2016).

7. Malin-Mayor C, Hirsch P, Guignard L, McDole K, Wan Y, Lemon WC, Keller PJ, Preibisch S, Funke J.

Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations.

bioRxiv:2021.07.28.454016, 2021.

