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JAN-US: SUMMARY 

We use sparse point annotations to train a convolutional neural network to predict at each pixel a cell 

indicator value that peaks at the center of each nucleus [1, 2], and a movement vector that points to the 

center of the same cell nucleus in the previous time frame [3, 4]. From these predictions, we generate a 

candidate graph in two steps: first, we place nodes at the local maxima of the cell indicator values to 

represent possible cell center locations, with a score to encode the network's confidence. Second, we  

locally connect nodes in adjacent frames with edges to represent the possibility that the nodes represent 

the same cell, and assign a score to each edge based on agreement with the predicted movement vector. 

Next, we solve a global constrained optimization problem on the candidate graph to select a subset of 

nodes and edges that form coherent lineage trees. We know that between time frames, cells can move, 

divide into two, enter or leave the field of view, or die, but not merge or split into more than two. Thus, 

we introduce hard constraints to prevent merging and divisions producing more than two progeny. The 

objective function incorporates prior knowledge that cell movement is much more common than 

division, death, and entering or leaving the field of view, encouraging long, continuous lineages by 

penalizing the start and end of tracks. These tree constraints and continuity costs are similar to those in 

previous work [5, 6, 7]; however, we also incorporate the node and edge scores generated by the neural 

networks into the objective function as learned costs. Thus, we optimize for valid lineages that are both 

continuous and supported by the learned cell location and movement features. Our Integer Linear 

Program (ILP) formulation of the optimization problem additionally allows solving piece-wise in parallel 

on large datasets by introducing additional constraints to ensure consistent solutions between adjacent 

regions. The method is described in detail in our preprint [7], together with results on other datasets.  

 
JAN-US: PREPROCESSING 

The training and testing volumes are converted into zarr containers. Gold-truth tracks for the training 

data (keeping only the centroid information provided by the challenge, not the segmentation) are stored 
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as CSV files. After training of the cell indicator and movement vector network, predictions on the testing 

volume are stored in zarr containers as well. Predictions outside the foreground are masked out. For 

Fluo-N3DL-DRO the foreground is determined automatically based on the raw image data. As this failed 

for Fluo-N3DH-CE a 2D polygon with about 10 points is drawn manually around a maximum intensity 

projection of each volume, this is extended in the z dimension and used as a mask.  

 
JAN-US: TRACKING 

We create a candidate graph G = (V, E) where nodes represent possible cell center locations, and edges 

possible movements of cells across frames. The nodes are found as NMS detections of the cell indicator 

values. We construct the set of directed edges E by locally connecting nodes in adjacent frames with 

edges that point one frame backwards in time. For each candidate v at time tv, we compute the 

predicted location Îv of the same cell in the previous frame: 𝑡̂v = lv + mv, where lv is the position of the 

node and mv is the predicted movement vector. Then, we add an edge from v to each node candidate u 

at time tv – 1 where the distance between the predicted location and the actual location of u is less than 

a hyperparameter . The edge is further scored by this distance. A lineage tree is then found by 

optimizing an integer linear program to find a cost-minimal forest in the candidate graph. Costs are 

defined for the selection of nodes (based on the value of the cell indicator) and edges (based on the 

distance between prediction and actual location). Linear constraints ensure that the selected nodes and 

edges form a binary forest. See [7] for a detailed description of the optimization problem.   

 

JAN-US: SEGMENTATION 

Our method is designed as a detection plus tracking system and therefore does not natively provide 

segmentations. To overcome this, we utilize the cell indicator predictions. Our network predicts a map 

with peaks at the centers of predicted nuclei locations. To create instance segmentation masks we 

perform a seeded watershed with the detections selected by the ILP as seed points and the inverted cell 

indicator map as the watershed surface. We threshold this map at a value  (hyperparameter). To further 

improve the segmentation we roughly estimate the nuclei size on the training set at up to 5 frames with 

varying nuclei size and count. We mask each instance with a sphere centered at the detection and with a 

size equal to the estimated nuclei size based on the next later estimated frame. 

 
JAN-US: POST-PROCESSING 

No post-processing step has been taken after segmentation. 
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