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KTH-SE: SUMMARY 

We have used a tracking by detection framework with four separate segmentation algorithms and a 

track linking algorithm based on the Viterbi algorithm. For the Fluo-N3DL-DRO, Fluo-N3DL-TRIC, and 

Fluo-N3DL-TRIF datasets, we also used a detection pre-processing algorithm based on GM-PHD filtering, 

which allows us to use dynamic motion models in the track linking step. When possible, we used a search 

algorithm to optimize the segmentation parameters, but in some cases we got better results by 

optimizing the parameters manually in a graphical user interface. Automatically optimized parameter 

values are underlined in the text below as well as in Parameter Configurations. 

 

KTH-SE: PREPROCESSING 

All images were converted to 64-bit double images with a saturation intensity of 1. Furthermore, to get 

rid of background features in Fluo-C2DL-MSC, BF-C2DLHSC, BF-C2DL-MuSC, and PhC-C2DH-U373, we 

subtracted background images before we applied the respective segmentation algorithms. In Fluo-C2DL-

MSC, the background image was computed as the minimum intensity for each pixel position, taken over 

the time dimension of the sequence. In BF-C2DL-HSC, BF-C2DL-MuSC, and PhC-C2DH-U373, the median 

intensity was used instead of the minimum intensity. In BF-C2DL-MuSC, the appearance of the image 

changes over time. Therefore, we computed separate background images for different time intervals. To 

deal with gradual changes of the image, we fitted a linear combination of background images to each 

image and then subtracted that linear combination. Background images were computed for the frame 

intervals 1-321, 322-421, 422-875, 876-908, and 909-1376. 

 

KTH-SE: SEGMENTATION 

We used four different segmentation algorithms to generate the binary segmentation masks, which we 

then post-processed to extract cell regions. When possible, we used a search algorithm to optimize the 

segmentation parameters, but in some cases we got better results by optimizing the parameters 

manually in a graphical user interface. Automatically optimized parameter values are underlined in the 
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descriptions below. The z-stacks of the Fluo-N3DL-TRIF dataset are so large that we decided to break 

each z-stack into 16 sub-volumes and segment the sub-volumes separately in order to use less memory. 

The sub-volumes overlapped by 100 voxels in each direction and after they were segmented, the 

segmented blobs from all sub-volumes were combined into a segmentation result for the entire z-stack. 

 

Bandpass segmentation. To segment all of the Fluo datasets and PhC-C2DL-PSC, we used the bandpass 

filtering based segmentation algorithm that we presented in [1]. We performed the filtering by 

convolving the original image I with two different Gaussian filters GS and GB, with covariance matrices 

ΣS = 𝜎S
2Σ and ΣB = 𝜎B

2Σ. In two dimensions, Σ is the 2×2 identity matrix, and in three dimensions 

Σ = diag(1, 1, 1/r2), where r is the ratio between the voxel height and the voxel width. The two filtered 

images are given by IS = I ∗ GS and IB = I ∗ GB, and the bandpass filtered image is computed as IBP = IS − αIB, 

where α is a free parameter. The binary segmentation mask is obtained by applying the threshold τ to IBP. 

To avoid under-segmentation of dim objects that are close to bright objects, we preprocessed some of 

the datasets using intensity clipping, where all pixel values above Imax are set to Imax. In Fluo-C2DL-MSC 

we applied a tophat filter with a radius of 300 pixels to remove background intensity. In Fluo-N3DH-CE 

the noise properties are different in the different image dimensions, and therefore we used a 5×1×3 

median filter to reduce the noise before we applied the bandpass filter. In Fluo-N3DL-TRIC and Fluo-

N3DL-TRIF we applied 2D tophat filters with radii of 15 and 18 pixels respectively to each z-slice to 

remove the high background in regions with densely packed nuclei. In Fluo-N3DH-CE and PhC-C2DL-PSC, 

we used different values for 𝜎S  and 𝜎B  for the first and the last image of the sequence, and used linear 

interpolation to compute different values for each image in between. In the Fluo-N3DH-CE dataset, the 

same linear functions are used for both sequences, but the sequences have different lengths and 

therefore they have different settings in the last image. 

 

Variance segmentation. To segment the cells in BF-C2DL-MuSC and PhC-C2DH-U373, we computed a 

texture image representing the intensity variance in a region around each pixel in the original image. This 

technique has been used previously to segment cells in transmission microscopy images [2, 3]. For BF-

C2DL-MuSC, we computed the variance in a square region of 7×7 pixels. In PhC-C2DH-U373, we 

weighted the surrounding pixels using a Gaussian kernel G with covariance matrix Σvar = 𝜎var
2 I2, where I2 is 

the 2 × 2 identity matrix. We computed the weighted local variance image V as (G ∗ I2)/ (G ∗ 1)- (G ∗ I)2/ 

(G ∗ 1)2, where I2 is an image with the squared pixel intensities and 1 is an image with all ones. The 

obtained variance image was thresholded using a threshold τvar to give a binary segmentation mask. We 



used the parameter values 𝜎var = 1.88 and τvar = 5.57E-5 for PhC-C2DH-U373 and τvar = 1.44 for BF-C2DL-

MuSC.  

 

Ridge segmentation. To segment cells in DIC-C2DH-HeLa, we developed an algorithm inspired by the 

algorithm used to segment muscle fibers in [4]. We first applied a ridge detection filter similar to the 

filter described in [4], to highlight the boundaries between the cells. The ridge detection was done by 

smoothing the image with Gaussian kernels with standard deviations σ of 5, 6, 7, 8, 9, and 10 pixels and 

computing the Hessian at each pixel of the six resulting images. The ridge image ν0(σ) at the scale σ was 

then computed from the eigenvalues λ1 and λ2, where λ1 ≤ λ2, of the corresponding Hessians as  

v0(σ) ={
0                                                 if λ1 > 0,                  

exp (
−RB

𝛾2 ) (1 − exp (
−𝑆

𝛽2))                                  otherwise,                                              
 

where RB = |λ2|/|λ1| and S = (λ1)
2 + (λ2)

 2. We used γ=1 and β=10. The final ridge image was obtained by 

taking the pixel-wise maximum of ν0(σ) over all σ and smoothing using a Gaussian filter with a standard 

deviation of 1 pixel. Once we had the ridge image, we transformed the intensities using the function 

f(x) = asinh(20x), to enhance dim ridges, and divided by the mean intensity of the transformed image. 

Then, we thresholded the ridge image at T = 0.75, and skeletonized the resulting binary mask to extract 

cell boundaries. To determine which of the resulting regions were cells and which were background, we 

computed a local variance image where each pixel value represented the sample variance in a 9×9 

neighborhood of the corresponding pixel in the original image. Regions with an average local variance 

above 0.0005 were considered to be cell regions. To fill in gaps in the skeletonized boundaries, we 

detected all end points of the skeleton and connected pairs of them by straight lines. End points were 

connected if they were no more than 50 pixels apart, and if the added line cut through a single segment, 

without generating a fragment smaller than 7500 pixels. If one of the new regions would become a 

background region, the size threshold was instead set to 200 pixels, as the operation would not split a 

cell in two. After joining end points, we removed cracks in regions by erasing all boundary pixels, which 

were bordering a single region. Then we merged the background regions and the border pixels into a 

single background region. Finally, we merged cell regions with less than 7500 pixels into adjacent cell 

regions until all cell regions either had at least 7500 pixels or were surrounded by background pixels.  

 

Template matching. To segment the BF-C2DL-HSC dataset, we used a segmentation algorithm based on 

template matching. In the algorithm, the cells are compared to a template, which in our case is a tightly 

cropped 23×23 pixel image of a single representative cell in the training data. The segmentation 



algorithm computes the correlation coefficient between the template and all image regions of the same 

size as the template. This produces a correlation coefficient image which has local maxima on the 

centers of the cells. To handle cells of different sizes, the template is scaled to have side lengths of 19, 

21, 23, 25, and 27 pixels. The cells are then detected as local maxima in a maximum intensity projection 

over the different sizes. For each local maximum, the cell size is taken to be the size which has the 

highest value for the local maximum pixel. The detections with a correlation coefficient above τtemp = 

0.45 are then converted into pixel masks. Circular pixel regions of the same sizes as the templates are 

created around the local maxima. The detections are added in order of decreasing correlation 

coefficients and detections which are closer than 10 pixels from an already added detection are 

discarded. Pixels that are inside multiple circles are assigned to the closest local maxima. The local 

variance segmentation algorithm that was used for BF-C2DL-MuSC was used as a secondary 

segmentation algorithm, to deal with cells that do not fit the template. In this case, the variance was 

computed in a square region of 5x5 pixels and thresholded with τvar = 2.  

 

Post-processing. To break regions with multiple cells into individual cell regions, we applied a seeded 

watershed transform (watersheds) to the image intensity (wI), the bandpass filtered image (wB), or the 

distance transform (wS) of the binary segmentation mask. The pixel values in the distance transform are 

the Euclidean distances to the closest background pixels. For z-stacks, where the voxel height was 

different from the voxel width, we used the anisotropic distance transform [5], where the distance 

between z-planes is different from the distance between neighboring voxels in the same plane. In Fluo-

N3DH-CE, Fluo-N3DL-DRO and Fluo-N3DL-TRIC, this did however give poor separation boundaries 

between the watersheds, as the distance between z-planes was too large. To avoid these problems, we 

inserted virtual z-planes between adjacent z-planes in the distance transform. We assigned values to the 

virtual z-planes using linear interpolation, ran the watershed transform and then removed the virtual 

planes. We used nine virtual z-planes for Fluo-N3DH-CE and two for Fluo-N3DL-DRO and Fluo-N3DL-

TRIC. For all datasets, the watershed transform was constrained to the foreground pixels of the binary 

segmentation mask, to speed up the computation, and to avoid getting watersheds, which overlap with 

multiple cell regions. To avoid over-segmentation, we applied Gaussian smoothing with a standard 

deviation of σW, and/or an h-minima transform with an h-value of Hmin. In Fluo-N2DH-GOWT1, we also 

removed watershed seeds with a distance transform value below 10 pixels, to further reduce over-

segmentation. In BF-C2DL-MuSC, Fluo-C2DL-MSC, Fluo-N3DL-TRIC, Fluo-N3DL-TRIF, and PhC-C2DL-PSC, 

we applied an additional watershed transform, after the first one, to break even more clusters into 



individual cells. To get rid of regions without cells, we removed regions with fewer than Amin voxels, and 

regions where the summed voxel intensity was below Smin. To compute the summed voxel intensity, we 

subtracted the minimum value of the image, and summed all voxels inside the segmented region. In 

Fluo-N3DL-DRO and Fluo-N3DL-TRIC, we also removed regions larger than 10000 voxels. For some 

datasets, we applied morphological operators to the extracted cell regions. We filled in holes in the 

segments of all datasets. In the Fluo-N2DH-SIM+-02 image sequence and in FluoN3DH-SIM+, we added 

all pixels inside the convex hulls of the original regions. Whenever a pixel was in the convex hull of 

multiple regions, we did not add it to any of them. In Fluo-N2DH-GOWT1 there were also pieces missing 

from the segments, but the true regions were not always convex, so to fill in missing parts, we instead 

applied morphological closing with a circular structuring element with a radius of 12.2 pixels. The 

variance-based segmentation of BF-C2DL-MuSC, BF-C2DL-HSC, and PhC-C2DH-U373 tends to give too 

large regions, due to the large kernel size used to compute the variance and the weighted variance. To 

overcome this problem, we applied morphological erosion with a square structuring element of 7 × 7 

pixels for BF-C2DL-MuSC and BF-C2DL-HSC, and with a circular structuring element of a radius of 8.31 

pixels for PhC-C2DH-U373. Furthermore, in BF-C2DL-HSC, the variance-based segmentation is used to 

create a binary segmentation mask, the pixels segmented by template matching are removed, and then 

morphological opening with a circular structuring element with a radius of 6 pixels is used to get rid of 

thin fragments that have been segmented between the cells detected by template matching. In DIC-

C2DH-HeLa there was quite a lot of over-segmentation, but in many cases over-segmented regions were 

correctly segmented in adjacent images. We therefore tried to reduce the over-segmentation by looking 

for cases where multiple cells overlapped with the same region in an adjacent image. If the fragments 

were smaller than 15000 pixels and had at least 60 % of their pixels in common with the region in the 

adjacent image, they were merged into a single region. 

 

Parameter optimization. For many of the datasets we used an automated search algorithm to optimize 

the segmentation parameters. The search algorithm used a type of coordinate ascent with variable step 

length to optimize the individual parameters one at a time. The parameters were initialized using manual 

tweaking, and the step lengths were set to 10 % of the initial values. In each optimization iteration of the 

optimization, the algorithm goes through the parameters one at a time and tries both increasing and 

decreasing them by the corresponding step lengths. The parameters are adjusted to the best value if 

either of the options gives a better result. If a better segmentation is found, the step length is increased 

by 20 % and otherwise it is decreased by 20 %. We used SEG as utility function for the optimization and 



ran it for 25 iterations. For Fluo-C2DL-MSC, Fluo-N2DH-SIM+, Fluo-N3DH-SIM+, Fluo-C3DH-A549, and 

Fluo-C3DH-A549-SIM, the parameters were optimized separately for each image sequence, but for all 

other datasets, the optimization was performed over all image sequences simultaneously, on the 

average SEG. 

 

KTH-SE: TRACKING 

For all datasets except Fluo-N3DL-DRO, Fluo-N3DL-TRIC, and Fluo-N3DL-TRIF, we applied our global 

track linking algorithm [3] directly to the detected cell regions. For Fluo-N3DL-DRO, Fluo-N3DL-TRIC, and 

Fluo-N3DL-TRIF we used a detection preprocessing algorithm [6], which takes advantage of the dynamic 

nature of the nuclei motion by preprocessing the detected locations using a Gaussian Mixture Probability 

Hypothesis Density (GM-PHD) filter [7]. Once we had preprocessed the locations, we linked them using 

the track linking algorithm presented in [3]. The algorithm considers the n most likely cell migrations to 

and from each detected cell region in the image sequences. For all datasets except Fluo-N3DL-TRIC and 

Fluo-N3DL-TRIF, n was set to 3 in order to not exclude true migrations. For Fluo-N3DL-TRIC and Fluo-

N3DL-TRIF however, n was set to 1 to decrease the run time and memory requirements. 

  

Global track linking. Our track linking algorithm is global in the sense that it considers all images of the 

sequence simultaneously when tracks are generated. The algorithm optimizes a probabilistically 

motivated scoring function by iteratively adding cell tracks to the image sequence. This is done by 

constructing a state space diagram representing all possible ways in which an additional cell track can be 

added to the image sequence [3]. The arcs of the state space diagram have scores associated with them, 

so that we can find the track that increases the scoring function the most by finding the highest scoring 

path through the state space diagram. Given that the state space diagram is a trellis graph, the highest 

scoring path can be found by solving a shortest path problem using the Viterbi algorithm. To prevent 

incorrectly created tracks from blocking the creation of correct tracks in subsequent iterations, the 

preexisting tracks can be edited using so called swap operations, when new tracks are created [3]. The 

scoring function is a sum of logarithmic probabilities of tracking events, which describe migration, 

mitosis, appearance, disappearance, and the number of cells in each detection. The probabilities of 

migration events are computed as described in [3], using a Brownian motion model where the location 

of a cell in one image is assumed to follow a Gaussian distribution with covariance matrix 𝜎V
2Σ, centered 

around the location of the cell in the previous image. We used the same Σ as in Bandpass Segmentation, 

except for Fluo-N3DH-CE, where we used Σ = diag(1, 1, 1/(4r)2), as there was significantly less motion in 



the z-dimension than in the other dimensions. The values for 𝜎V were set manually for all datasets. In 

Fluo-N3DH-CE, we used different values for 𝜎V  for the first and the last image of the sequence, and used 

linear interpolation to compute a different value for each image in between. The prior probabilities that 

the segmented regions contain zero, one, or more than one cell are denoted p0, p1, and p2. The 

probability that a cell undergoes mitosis in a region is denoted pS, and the probability that a cell appears 

or disappears randomly in a region is denoted pA. For all datasets except BF-C2DL-HSC and BF-C2DL-

MuSC, these probabilities were set manually. For BF-C2DL-HSC and BF-C2DL-MuSC, logistic regression 

classifiers were used to compute p0, p1, p2, and pS. The logistic regression classifiers use intensity and 

shape-features of the segmented regions and were trained on manually corrected tracking results on the 

training sequences. Details about the classifiers and the features can be found in [3]. Once the Viterbi 

algorithm has finalized generating tracks, the segmented regions with multiple cells are separated using 

k-means clustering of the pixel coordinates as described in [3], so that each cell gets a region of its own. 

Then the track linking is updated, to account for the new centroid positions of the individual cells, by 

solving an assignment problem that maximizes the scoring function. For the image sequences which have 

FP=”yes”, we included segmented regions in the results even if the track linking algorithm found them to 

be false positives. This was done to maximize the TRA and SEG measures, which penalize false negatives 

more than false positives. 

 

Global track linking with detection preprocessing. The cells in Fluo-N3DL-DRO, Fluo-N3DL-TRIC, and Fluo-

N3DL-TRIF form tissues which deform as the embryos develop. Because of this, the nuclei follow smooth 

and predictable trajectories. The track linking procedure described in the previous section assumes that 

the nuclei follow Brownian motion, and can therefore not take the velocities of the nuclei into account 

when it predicts where they are going to be in the next frame. To enable tracking of fast moving nuclei, 

we therefore used the algorithm described in [6]. It first runs a GM-PHD filter on the centroids of the 

nuclei and then links the Gaussian components (which include velocity states) of the computed 

hypothesis densities into tracks using the track linking algorithm in [3]. For the GM-PHD we used the 

directed linear motion model previously used by us to track simulated microtubules in [6], with a scale 

factor q = 0.5 for the process noise, and an observation noise covariance of R = 4Σ. For the remaining 

parameters described in [6] we used the following values: pS = 0.9999, pD = 0.999, κ = 4E−6, wmin = 0.001, 

KLDmin = 1, Jmax = 10000, and 𝜎V = 2. To get estimates of the probabilities that Gaussian components in 

the GM-PHD correspond to cells, we trained a multinomial logistic regression classifier on the weights of 

Gaussian components that were updated using detections that overlapped with ground truth regions in 



the training dataset. The component with the highest weight in each detection was assumed to be a cell 

and the others were assumed to not be cells. This was the best we could do with the incomplete ground 

truth that we were given. The same classifier was used for Fluo-N3DL-DRO, Fluo-N3DL-TRIC, and Fluo-

N3DL-TRIF. We first tracked all the nuclei using the algorithm described above, and then we selected the 

tracks that overlapped with one of the manually marked nuclei in the first image. For manually marked  

nuclei, which had no overlapping tracks, we selected the closest non-overlapping track. For Fluo-N3DL-

DRO we expected all of the selected tracks to reach the end of the video. We therefore extended broken 

selected tracks by linking them to fragments of unselected tracks. This was done by propagating the 

state of the broken track to the frame after the break, using the directed linear motion model, and then 

linking it to the closest unselected track in that frame. This was done iteratively until all selected tracks 

reached the end of the image sequence. 

 

KTH-SE: POST-PROCESSING 

To remove segmentation errors that were due to over-segmentation in the watershed transforms, we 

iteratively merged region fragments without cells into adjacent regions with cells, after the tracking had 

been completed. We took this idea one step further in the dataset Fluo-C3DH-A549 and the image 

sequence FluoC2DL-MSC-01, where we also merged region fragments without cells in image t, into cells 

with which they overlapped in one of the images t − 3, t − 2, t − 1, t + 1, t + 2, and t + 3. The fragments 

were merged with the regions of the cells in image t, provided that the cells were present in that image. 

The merging was done iteratively until no more fragments could be merged. 
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