
MU-Ba-US 

Authors: Rina Bao, Noor Al-Shakarji, Imad Toubal, Kannappan Palaniappan, Filiz Bunyak 

Email: rinabao@mail.missouri.edu, nmahyd@missouri.edu, pal@missouri.edu 

Platform: Linux 

Prerequisites: Python 3.6 with PyTorch 

 

MU-Ba-US: SUMMARY 

Our generalized cell tracking pipeline is a two-stage method that follows the tracking by detection and 

segmentation paradigm with cell segmentation (DMNet) followed by cell lineage tracking (M2Track). The 

deep network for cell segmentation is designed to localize cells of different types, appearance, shapes, 

sizes, and deformation behavior. The multi-object tracking stage is highly scalable using two-step linear 

sum assignment for data association to track cells across frames generating tracklets followed by tracklet 

linking and occlusion handling with parent-child lineage associations. 

 

MU-Ba-US: PREPROCESSING 

The raw input images are preprocessed using a contrast enhancement approach with trimmed z-score 

(mean and variance) normalization after outlier removal. 

 

MU-Ba-US: SEGMENTATION 

We designed our DMNet [1] using a modified version of HRNet deep architecture [2] to learn both the 

centroid localization and cell segmentation mask as a multi-head output. There are two streams in the 

network architecture -- one stream is designed to produce cell centroid (shape marker) detections, and 

the other is designed to output accurate cell mask segmentations. Transform distance maps are 

computed during the training stage and used to penalize the boundary region of cells for training the 

network to generate accurate cell segmentations. When markers reliably localize the cells they are used 

with the mask stream to jointly improve the segmentation of multiple cells. During the training process, 

marker localization is trained with centroid supervision, or shape marker computed using masks. Both 

the marker localization and cell segmentation network streams are trained on eight 2D+t and five 3D+t 

video microscopy datasets using a distance-based penalty loss function. During training, common data 

augmentation strategies are applied including rotation, flip, with size scaling from 0.8 to 1.5 applied to 

each video frame. During inference, DMNet produces both markers and segmentation masks as output 

images for each frame. 
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MU-Ba-US: TRACKING 

The cell tracking pipeline is based on adapting our computer vision-based, multi-object-tracking 

algorithm M2Track [3, 4] for biological cell tracking with deformable cell shapes [5, 6, 7]. Multi-cell 

tracking is used to track the detected and segmented cells produced by DMNet. Data association using 

linear assignment is used to link detections with tracklets in consecutive frames. The data association 

criteria includes several user selectable choices including centroid Euclidean distance, bounding box 

intersection-over-union (IOU) score or a mask-based IOU score combined with a generalized faster 

version of the Hungarian optimization algorithm [8]. M2Track incorporates several modules for robust 

tracking including: (i) a gating strategy for reducing assignment complexity by pruning improbable 

assignments of detections to tracklet IDs, (ii) Kalman filter prediction for recovering from missed 

detections, (iii) tracklet linking, and (iv) forward-backward association analysis to recover from occlusions 

and to track mitosis events for lineage linking. Using these tracking modules, tracks for newly entering 

cells or old cells exiting the field of view are explicitly handled.  

 

MU-Ba-US: POST-PROCESSING 

A morphological watershed transform is used to split cells guided by reliable centroids/markers 

generated by the DMNet segmentation stage. 
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