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WARW-UK: SUMMARY 

Our approach is based on the curvature-enhanced random walker (CERW), which we have described 

previously [1]. The CERW is designed to segment cells with large protrusions (e.g., filopodia) and deep 

invaginations (e.g., macropinocytotic cups). 

 

WARW-UK: PREPROCESSING 

Preprocessing steps are performed on each image to generate two images, namely the preprocessed 

image and the seed image. To generate the preprocessed images, the following steps are applied. 

Images are scaled in z by a factor rz using cubic interpolation to produce isotropic resolution, and 

normalized to [0, 1]. A band-pass filter is applied to all images I using two Gaussian filters Gs and Gb, with 

standard deviations σs and σb, to generate the image J = Gs ∗ I − Gb ∗ I. For images in Fluo-C3DH-A549-

SIM-02, 2D contrast-limited adaptive histogram equalization (CLAHE) is applied to J with tile width wCLAHE 

to yield the preprocessed image, while J is taken as the preprocessed image in all other time-lapse 

sequences analyzed. Seed images are generated from the input images using Phansalkar thresholding 

[2]. Prior to thresholding, the following preprocessing steps are applied to the input images. The images 

are scaled in z and normalized as above. A gamma correction of 0.5 is applied to images in Fluo-C3DH-

A549-SIM. A median filter of radius rm is applied to each image. Additionally, a mean filter of radius rµ is 

applied to all images in Fluo-C3DH-A549-SIM-02. Band-pass and CLAHE preprocessing are then applied 

to all images in the manner described above. Phansalkar thresholding [2] is applied to the resulting 

images using a radius rp, with image-dependent parameter values generated as described previously [1]. 

Background seeds for all images are obtained from the thresholded image by applying a morphological 

dilation (radius 𝑟𝐷
𝐵𝐺), fill, and erosion (radius 𝑟𝐸

𝐵𝐺) operators, and inverting the resulting image. In a 

similar manner, foreground seeds are obtained using dilation (radius 𝑟𝐷
𝐹𝐺), fill, and erosion (radius 𝑟𝐷

𝐹𝐺). 

These seeds are added to a second set of seeds in Fluo-C3DH-A549-02 and Fluo-C3DH-A549-SIM-02, 

obtained by identifying maxima along the local gradient direction as described previously [1]. 
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CALT-US: SEGMENTATION 

Random walker segmentation can be modeled as the steady state of a discretisation of the non-linear 

diffusion system [3, 4]: 

𝜕𝑣

𝜕𝑡
= ∇(𝑊∇𝑣), 

with 
𝜕𝑣

𝜕𝑛
= 0 at the volume boundary with normal 𝑛, subject to the constraints 𝑣(𝑥, 𝑡) = 1 if 𝑥  is a 

foreground seed voxel, and 𝑣(𝑥, 𝑡) = 0  if 𝑥 is a background seed voxel, and 𝑊 is the diffusion weighting 

function, defined discretely between two voxels 𝑥 and 𝑦, as 

𝑊(𝑥, 𝑦) = exp⁡[−𝛽‖𝐼(𝑥) − 𝐼(𝑦)‖2 − 𝛼(‖𝑥 − 𝑦‖2 − 1)] 

where ‖∙‖  is the Euclidean norm, 𝐼(𝑥)  and 𝐼(𝑦)  are the preprocessed image intensities at 𝑥  and 𝑦 

respectively, and 𝛽 and 𝛼 are fixed parameters. The discretised form of the diffusion system for the point 

𝑥 is 

𝑣(𝑥 + ∆𝑡) − 𝑣(𝑥)

∆𝑡
= ∑ 𝑊(𝑥, 𝑦)[𝑣(𝑦, 𝑡) − 𝑣(𝑥, 𝑡)]

𝑦∈𝑁(𝑥)

 

where 𝑁(𝑥) is the 18-connected neighborhood of 𝑥, and time step ∆𝑡 < max(𝑊)/ 18 to satisfy the 

Courant-Friedrichs-Lewy (CFL) condition for numerical stability [5]. The equilibrium values of 𝑣 are 

computed using first forward Euler method, with the segmented foreground (in the absence of curvature 

enhancement) given by voxels with 𝑣 > 0.5 [4]. 

The curvature-enhanced random walker is defined by the system 

𝜕𝑣

𝜕𝑡
= ∇(𝑊∇𝑣) + 𝜅𝐻(𝑣)𝑣(1 − 𝑣), 

subject to the same constraints as above, where 𝜅 is a fixed parameter, 𝑊 is defined as above, and 

𝐻(𝑣) ={
𝐻(𝑣)⁡⁡⁡⁡⁡if⁡𝐻(𝑣)(𝑣 − 0.5) > 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 

where 𝐻(𝑣) = −∇ ∙ (∇𝑣/‖∇𝑣‖) is the mean curvature. The time step is taken to be the same as in the 

random walker, since this value is sufficiently low to provide numerical stability for the combined 

system. As with the standard random walker, equilibrium values of 𝑣 are calculated and the segmented 

foreground is given by voxels with 𝑣 > 0.5. 

The gradients for computing 𝐻(𝑣) are approximated in each direction using an extension of the 3D Sobel 

filter, which is given in the x-direction as a smoothing in y and z by applying the 1D filter (1,4,6,4,1)/16 in 

both y- and z-directions, followed by a differencing filter in x with radius 3, given by (−1,0,0,0,0,0,1)/6. 

The formulation for y- and z-directions are defined similarly. The number of operations involved in this 

computation are much higher than for the finite differences in the random walker, and therefore 



increase computation time. This time is reduced in the implementation used here by only computing the 

curvature every 10 time steps, which had a negligible impact on the resulting segmentation. 

The curvature-enhanced random walker segmentation is implemented on a GPU as follows. Initially, the 

equilibrium values 𝑣1 of the standard random walker system are computed, with initial conditions 

𝑣(𝑥, 0) = 0.5⁡for all 𝑥 not in either of the seed sets. The equilibrium values 𝑣2  of the curvature-enhanced 

diffusion system are subsequently computed with initial conditions 𝑣(𝑥, 0) = 𝑣1. Equilibrium in both 

cases is defined as the point where the mean relative error falls below a threshold 𝜖, or if a maximum 

number of time steps Tmax is reached. The segmented object is given by the set of voxels with 𝑣2 > 0.5. 

  

WARW-UK: POST-PROCESSING 

A large value of the curvature weighting coefficient, 𝜅, was chosen to enable the identification of long 

and branching filopodia in Fluo-C3DH-A549-02 and Fluo-C3DH-A549-SIM-02. Because the curvature 

term is independent of the original image, this leads to the filopodia being detected with a wider cross-

section than desired. Additionally, a higher curvature weighting can lead to background leaking into the 

cell through areas of low membrane intensity in some images. Accordingly, the following postprocessing 

steps are required. 

The first step is to apply morphological dilation (radius 𝑟𝐷
𝑃𝑃), fill, and erosion (radius 𝑟𝐸

𝑃𝑃) to fill any holes 

inside the cell. The second step is to move the surface of each binary mask to the nearest edge of the 

original input image. A Gaussian filter with standard deviation σe is applied to the input image followed 

by a Sobel filter to obtain the gradient magnitude. A surface mesh is generated from the binary 

segmentation mask using Matlab’s isosurface function. For each vertex v of the mesh, lines of length rmax 

are drawn along the surface normal from v extending to the interior and exterior of the surface. To 

prevent intersection with another part of the surface, each line is truncated so that the distance to the 

surface only increases along the line away from v. The voxel u along both of these lines with the highest 

gradient magnitude is selected as the new location of the surface vertex. If u is interior to the surface, 

then all voxels intersecting the line between v and u are assigned the background value, while the 

opposite assignment is made if u is exterior. The volume generated in this manner is smoothed using a 

median filter of radius 1.  

For all datasets analyzed, a morphological fill operator is applied to all images and each image is reduced 

to the largest 6-connected component. Finally, all images are rescaled back to the original image 

dimensions by downsampling in z using the scale factor 1/rz. 
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